θ dependence of 4D SU(N) gauge theories in the large-N limit

被引:81
作者
Bonati, Claudio [1 ]
D'Elia, Massimo [1 ]
Rossi, Paolo [1 ]
Vicari, Ettore [1 ]
机构
[1] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
关键词
MONTE-CARLO; TOPOLOGICAL SUSCEPTIBILITY; CP CONSERVATION; LATTICE; INSTANTONS; CHARGE; QCD; MODELS; U(1);
D O I
10.1103/PhysRevD.94.085017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the large-N scaling behavior of the theta dependence of the ground-state energy density E(theta) of four-dimensional (4D) SU(N) gauge theories and two-dimensional (2D) CPN-1 models, where theta is the parameter associated with the Lagrangian topological term. We consider its. expansion around theta = 0, E(theta) - E(0) = 1/2 chi theta(2) (1 + b(2)theta(2) + b(4)theta(4) + ...), where chi is the topological susceptibility and b(2n) are dimensionless coefficients. We focus on the first few coefficients b(2n), which parametrize the deviation from a simple Gaussian distribution of the topological charge at theta = 0. We present a numerical analysis of Monte Carlo simulations of 4D SU(N) lattice gauge theories for N = 3, 4, 6 in the presence of an imaginary theta term. The results provide a robust evidence of the large-N behavior predicted by standard large-N scaling arguments, i.e. b(2n) = O(N-2n). In particular, we obtain b(2) = (b) over bar (2)/N-2 + O(1/N-4) with (b) over bar (2) = -0.23(3). We also show that the large-N scaling scenario applies to 2D CPN-1 models as well, by an analytical computation of the leading large-N theta dependence around theta = 0.
引用
收藏
页数:12
相关论文
共 84 条
[1]   A COSMOLOGICAL BOUND ON THE INVISIBLE AXION [J].
ABBOTT, LF ;
SIKIVIE, P .
PHYSICS LETTERS B, 1983, 120 (1-3) :133-136
[2]   Topological charge using cooling and the gradient flow [J].
Alexandrou, C. ;
Athenodorou, A. ;
Jansen, K. .
PHYSICAL REVIEW D, 2015, 92 (12)
[3]   Behavior near θ = π of the mass gap in the two-dimensional O(3) nonlinear sigma model [J].
Alles, B. ;
Giordano, M. ;
Papa, A. .
PHYSICAL REVIEW B, 2014, 90 (18)
[4]   Mass gap in the 2D O(3) nonlinear sigma model with a θ = π term [J].
Alles, B. ;
Papa, A. .
PHYSICAL REVIEW D, 2008, 77 (05)
[5]  
Allés B, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.094507
[6]   θ dependence of the deconfining phase transition in pure SU(Nc) Yang-Mills theories [J].
Anber, Mohamed M. .
PHYSICAL REVIEW D, 2013, 88 (08)
[7]  
[Anonymous], 1988, ASPECTS SYMMETRY
[8]  
Aoki S., ARXIV08081428
[9]   RENORMALIZATION AND PHASE-TRANSITION IN THE QUANTUM CPN-1 MODEL (D=2,3) [J].
AREFEVA, IY ;
AZAKOV, SI .
NUCLEAR PHYSICS B, 1980, 162 (02) :298-310
[10]   New proposal for numerical simulations of θ-vacuum-like systems -: art. no. 141601 [J].
Azcoiti, V ;
Di Carlo, G ;
Galante, A ;
Laliena, V .
PHYSICAL REVIEW LETTERS, 2002, 89 (14) :1-141601