Polarization rotation of localized modes in magneto-photonic Fibonacci structures containing nematic layers

被引:4
|
作者
da Silva, R. R. [1 ,2 ]
Zanetti, F. M. [3 ]
Lyra, M. L. [1 ]
de Oliveira, I. N. [1 ]
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil
[2] Inst Fed Bahia, Campus Vitoria Da Conquista, Vitoria Da Conquista, BA, Brazil
[3] Univ Fed Parana, Dept Fis, Curitiba, PR, Brazil
关键词
Faraday rotation; liquid crystalline photonic structure; magneto-optical device; quasi-crystals; CHOLESTERIC LIQUID-CRYSTAL; DIELECTRIC MULTILAYERS; MAGNETOPHOTONIC CRYSTALS; THEORETICAL-ANALYSIS; LIGHT WAVES; TRANSMISSION; BAND; DEFECTS; DEVICES; OPTICS;
D O I
10.1080/15421406.2017.1402590
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we investigate the spectral characteristics of the oblique incident light transmitted by a multilayered structure composed of a quasi-periodic Fibonaccian sequence of nematic and magnetic layers. Using the Berreman 4 x 4 matrix formalism, we numerically obtain the transmission spectrum and the polarization rotation angle of the system as a function of the incidence angle. Our results reveal that themismatch between the wavelengths of the localized transmitted mode within the band gap and the mode with pronounced polarization rotation angle is reduced when one departs from the normal incidence condition. Further, we report the dependence of the band gap width and the spectral characteristics of the transmitted mode as a function of the incidence angle. The relevance of the present finding to the development of new magneto-optical devices is discussed.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 50 条
  • [1] Polarization Rotation Enhancement and Gyrotropic Photonic Bandgaps in Birefringent Magneto-Photonic Crystals
    Jalali, Amir A.
    Levy, Miguel
    Zhou, Ziyou
    Dissanayake, Neluka
    PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS II, 2008, 7056
  • [2] Birefringence-induced wavelength mismatch between the polarization rotation and resonant modes in magnetophotonic structures containing nematic layers
    da Silva, R. R.
    Zanetti, F. M.
    de Oliveira, I. N.
    PHYSICAL REVIEW E, 2014, 89 (01):
  • [3] Optical modes conversion in magneto-photonic crystal waveguides
    Nikitov, SA
    Tailhades, P
    OPTICS COMMUNICATIONS, 2001, 199 (5-6) : 389 - 397
  • [4] Ultrathin conformal coating for complex magneto-photonic structures
    Pascu, Oana
    Manuel Caicedo, Jose
    Lopez-Garcia, Martin
    Canalejas, Victor
    Blanco, Alvaro
    Lopez, Cefe
    Arbiol, Jordi
    Fontcuberta, Josep
    Roig, Anna
    Herranz, Gervasi
    NANOSCALE, 2011, 3 (11) : 4811 - 4816
  • [5] Enhancing the Faraday rotation in the monolayer phosphorus base of magneto-photonic crystals
    Dong, Daxing
    Liu, Youwen
    Fei, Yue
    Fan, Yongqing
    Li, Junsheng
    Fu, Yangyang
    OPTICAL MATERIALS, 2020, 102
  • [6] Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance
    Tuz, Vladimir R.
    Vidil, Mikhail Yu
    Prosvirnin, Sergey L.
    JOURNAL OF OPTICS, 2010, 12 (09)
  • [7] Magnetically tunable magneto-photonic crystals for multifunctional terahertz polarization controller
    Fan Fei
    Guo Zhan
    Bai Jin-Jun
    Wang Xiang-Hui
    Chang Sheng-Jiang
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [8] Nonlinear magneto-optical Kerr effect in gyrotropic photonic band gap structures: magneto-photonic microcavities
    Fedyanin, AA
    Yoshida, T
    Nishimura, K
    Marowsky, G
    Inoue, M
    Aktsipetrov, OA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 258 : 96 - 98
  • [9] About Faraday rotation in bulk media, in a magneto-active layer and in a magneto-photonic crystal layer
    Gevorgyan, A. H.
    Golik, S. S.
    Gevorgyan, T. A.
    JOURNAL OF MODERN OPTICS, 2019, 66 (14) : 1506 - 1513
  • [10] The Hybridization of Fabry–Perot and Tamm Modes in a Spatially Inhomogeneous Magneto-Photonic Crystal
    Tomilina O.A.
    Kudryashov A.L.
    Karavaynikov A.V.
    Lyashko S.D.
    Milyukova E.T.
    Berzhansky V.N.
    Tomilin S.V.
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (04) : 513 - 522