Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines

被引:0
|
作者
Banerjee, Agniva [1 ]
Dalal, Raka [1 ]
Mittal, Sudip [1 ]
Joshi, Karuna Pande [1 ]
机构
[1] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
关键词
Digital Twin; Knowledge Graph; Big Data; Industrial Internet of 'Things; Semantic Web;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Digital Twin models are computerized clones of physical assets that can be used for in-depth analysis. Industrial production lines tend to have multiple sensors to generate near real-time status information for production. Industrial Internet of Things datasets are difficult to analyze and infer valuable insights such as points of failure, estimated overhead. etc. In this paper we introduce a simple way of formalizing knowledge as digital tivin models coming from sensors in industrial production lines. We present a way on to extract and infer knowledge from large scale production line data, and enhance manufacturing process management with reasoning capabilities, by introducing a semantic query mechanism. Our system primarily utilizes a graph-based query language equivalent to conjunctiNre queries and has been enriched with inference rules.
引用
收藏
页码:425 / 430
页数:6
相关论文
共 50 条
  • [1] Semantic digital twin models A methodology for digital twin creation using knowledge graphs
    Steinmetz, Charles
    Gloewing, Katrin
    Schroeder, Greyce N.
    Binotto, Alecio
    Rettberg, Achim
    Pereira, Carlos E.
    ATP MAGAZINE, 2023, (05): : 69 - 77
  • [2] A methodology for creating semantic digital twin models supported by knowledge graphs
    Steinmetz, Charles
    Schroeder, Greyce N.
    Sulak, Adam
    Tuna, Kaan
    Binotto, Alecio
    Rettberg, Achim
    Pereira, Carlos Eduardo
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [3] Building a Digital Twin Network of SDN Using Knowledge Graphs
    Raj, Deepu Raj Ramachandran
    Shaik, Tahir Ahmed
    Hirwe, Anish
    Tammana, Praveen
    Kataoka, Kotaro
    IEEE ACCESS, 2023, 11 : 63092 - 63106
  • [4] SEDIT: Semantic Digital Twin Based on Industrial IoT Data Management and Knowledge Graphs
    Miguel Gomez-Berbis, Juan
    de Amescua-Seco, Antonio
    TECHNOLOGIES AND INNOVATION (CITI 2019), 2019, 1124 : 178 - 188
  • [5] A framework for development of digital twin industrial robot production lines based on a mechatronics approach
    Zhao, Yuan
    Liu, Yongkui
    Feng, Jianyong
    Guo, Jinwei
    Zhang, Lin
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2023, 14 (06)
  • [6] Improving industrial sustainability by the use of digital twin models in maintenance and production activities
    Franciosi, Chiara
    Miranda, Salvatore
    Veneroso, Ciele Resende
    Riemma, Stefano
    IFAC PAPERSONLINE, 2022, 55 (19): : 37 - 42
  • [7] Knowledge Graphs in the Digital Twin: A Systematic Literature Review About the Combination of Semantic Technologies and Simulation in Industrial Automation
    Listl, Franz Georg
    Dittler, Daniel
    Hildebrandt, Gary
    Stegmaier, Valentin
    Jazdi, Nasser
    Weyrich, Michael
    IEEE ACCESS, 2024, 12 : 187828 - 187843
  • [8] Knowledge Graphs in Digital Twins for AI in Production
    Lietaert, Pieter
    Meyers, Bart
    Van Noten, Johan
    Sips, Joren
    Gadeyne, Klaas
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT I, 2021, 630 : 249 - 257
  • [9] Production planning using the digital twin
    Effiziente Erstellung eines digitalen Zwillings zur Verwendung im Produktionsmanagement
    Produktionsplanung mit dem digitalen Zwilling
    Stobrawa, S. (denkena@ifw.uni-hannover.de), 1600, VDI Fachmedien GmBH & Co. KG (110): : 661 - 665
  • [10] Digital Twin Models in Industrial Operations: A Systematic Literature Review
    Melesse, Tsega Y.
    Di Pasquale, Valentina
    Riemma, Stefano
    INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING (ISM 2019), 2020, 42 : 267 - 272