Understanding Oligonucleotide-Templated Nanocrystals: Growth Mechanisms and Surface Properties

被引:13
作者
Cha, Tae-Gon [1 ]
Baker, Benjamin A. [1 ]
Salgado, Janette [1 ]
Bates, Christopher J. [1 ]
Chen, Kok Hao [3 ]
Chang, Alice C. [3 ]
Akatay, M. Cem [2 ]
Han, Jae-Hee [4 ]
Strano, Michael S. [3 ]
Choi, Jong Hyun [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, Birck Nanotechnol Ctr, Bindley Biosci Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mat Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[4] Gachon Univ, Dept Energy & Informat Technol, Songnam 461701, Gyeonggi Do, South Korea
基金
美国国家科学基金会;
关键词
template synthesis; oligonucleotides; nanocrystals; capping chemistry; particle growth; QUANTUM DOTS; NUCLEIC-ACID; DNA APTAMER; RNA; SELECTION;
D O I
10.1021/nn302779m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe studies of nanoparticle synthesis using oligonucleotides as capping ligands. The oligonucleotides nucleate, grow, and stabilize near-infrared fluorescent, approximately uniform PbS nanocrystals in an aqueous environment. The properties of the resulting particles strongly depend upon the sequences as well as synthesis conditions. Fourier Transform infrared measurements suggest that functional groups on the nucleobases such as carbonyl and amine moieties are responsible for surface passivation, while the phosphate backbone is strained to accommodate nucleobase bonding, preventing irreversible aggregation and thereby stabilizing the colloids. Our theoretical model indicates that oligonucleotide-mediated particle growth relies on the chemical reactivity of the oligonucleotide ligands that saturate dangling bonds of growing clusters, and favorable sequences are those that have the highest surface reactivity with growing particles. The oligonucleotide template approach is facile and versatile, offering a route to produce a range of material compositions for other chalcogenide semiconductor quantum dots and metal oxide nanoparticles.
引用
收藏
页码:8136 / 8143
页数:8
相关论文
共 39 条
[1]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[2]   OLIGONUCLEOTIDE DNA AND RNA AS DIRECT CAPPING LIGAND FOR NANOCRYSTALS: AN EMERGING METHOD FOR BIOLOGICAL DIAGNOSTICS AND THERAPEUTICS [J].
Baker, Benjamin A. ;
Choi, Jong Hyun .
NANO, 2009, 4 (04) :189-199
[3]   A library of IR bands of nucleic acids in solution [J].
Banyay, M ;
Sarkar, M ;
Gräslund, A .
BIOPHYSICAL CHEMISTRY, 2003, 104 (02) :477-488
[4]   Antiproliferative activity of G-rich oligonucleotides correlates with protein binding [J].
Bates, PJ ;
Kahlon, JB ;
Thomas, SD ;
Trent, JO ;
Miller, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26369-26377
[5]   Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles [J].
Berti, Lorenzo ;
Burley, Glenn A. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :81-87
[6]   SELECTION OF SINGLE-STRANDED-DNA MOLECULES THAT BIND AND INHIBIT HUMAN THROMBIN [J].
BOCK, LC ;
GRIFFIN, LC ;
LATHAM, JA ;
VERMAAS, EH ;
TOOLE, JJ .
NATURE, 1992, 355 (6360) :564-566
[7]   Aptamer-capped nanocrystal quantum dots: A new method for label-free protein detection [J].
Choi, Jong Hyun ;
Chen, Kok Hao ;
Strano, Michael S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (49) :15584-15585
[8]   DNA Aptamer-Passivated Nanocrystal Synthesis: A Facile Approach for Nanoparticle-Based Cancer Cell Growth Inhibition [J].
Choi, Jong Hyun ;
Chen, Kok Hao ;
Han, Jae-Hee ;
Chaffee, Amanda M. ;
Strano, Michael S. .
SMALL, 2009, 5 (06) :672-675
[9]  
Coffer J. L., 1992, Nanotechnology, V3, P69, DOI 10.1088/0957-4484/3/2/004
[10]   DNA-templated semiconductor nanoparticle chains and wires [J].
Dong, Liqin ;
Hollis, Tom ;
Connolly, Bernard A. ;
Wright, Nicholas G. ;
Horrocks, Benjamin R. ;
Houlton, Andrew .
ADVANCED MATERIALS, 2007, 19 (13) :1748-+