Provably efficient machine learning for quantum many-body problems

被引:136
作者
Huang, Hsin-Yuan [1 ,2 ]
Kueng, Richard [3 ]
Torlai, Giacomo [4 ]
Albert, Victor V. [5 ,6 ]
Preskill, John [1 ,2 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[3] Johannes Kepler Univ Linz, Inst Integrated Circuits, Linz, Austria
[4] AWS Ctr Quantum Comp, Pasadena, CA USA
[5] NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD USA
[6] Univ Maryland, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
PHASE-TRANSITIONS; GAPPED PHASES; MATTER;
D O I
10.1126/science.abk3333
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground-state properties of gapped Hamiltonians after learning from other Hamiltonians in the same quantum phase of matter. By contrast, under a widely accepted conjecture, classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that classical ML algorithms can efficiently classify a wide range of quantum phases. Extensive numerical experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases.
引用
收藏
页码:1397 / +
页数:11
相关论文
共 94 条
[1]   A Many-Body Index for Quantum Charge Transport [J].
Bachmann, Sven ;
Bols, Alex ;
De Roeck, Wojciech ;
Fraas, Martin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) :1249-1272
[2]   On Gapped Phases with a Continuous Symmetry and Boundary Operators [J].
Bachmann, Sven ;
Nachtergaele, Bruno .
JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (1-2) :91-112
[3]   Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems [J].
Bachmann, Sven ;
Michalakis, Spyridon ;
Nachtergaele, Bruno ;
Sims, Robert .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (03) :835-871
[4]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[5]  
Becca F, 2017, QUANTUM MONTE CARLO APPROACHES FOR CORRELATED SYSTEMS, P1, DOI 10.1017/9781316417041
[6]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[7]   Classifying snapshots of the doped Hubbard model with machine learning [J].
Bohrdt, Annabelle ;
Chiu, Christie S. ;
Jig, Geoffrey ;
Xu, Muqing ;
Greif, Daniel ;
Greiner, Markus ;
Demler, Eugene ;
Grusdt, Fabian ;
Knap, Michael .
NATURE PHYSICS, 2019, 15 (09) :921-924
[8]   Many-body physics with individually controlled Rydberg atoms [J].
Browaeys, Antoine ;
Lahaye, Thierry .
NATURE PHYSICS, 2020, 16 (02) :132-142
[9]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[10]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605