A local-to-global boundedness argument and Fourier integral operators

被引:15
作者
Ruzhansky, Michael [1 ,3 ,4 ]
Sugimoto, Mitsuru [2 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[4] Queen Mary Univ London, Sch Math Sci, London, England
基金
英国工程与自然科学研究理事会;
关键词
Integral operators; L-P-boundedness; Fourier integral operators; REGULARITY; EQUATIONS; SPACES;
D O I
10.1016/j.jmaa.2018.12.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a criterion for the global boundedness of integral operators which are known to be locally bounded. As an application, we discuss the global L-P-boundedness for a class of Fourier integral operators. While the local L-P-boundedness of Fourier integral operators is known from the work of Seeger, Sogge and Stein [26], not so many results are available for the global boundedness on L-P(R-n). We give several natural sufficient conditions for them. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:892 / 904
页数:13
相关论文
共 30 条
[1]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[2]  
Asada K., 1978, JPN J MATH NS, V4, P299
[3]  
Beals M., 1982, MEM AM MATH SOC, V38
[4]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[5]   GLOBAL Lp CONTINUITY OF FOURIER INTEGRAL OPERATORS [J].
Coriasco, Sandro ;
Ruzhansky, Michael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) :2575-2596
[6]   On the boundedness of Fourier integral operators on Lp(Rn) [J].
Coriasco, Sandro ;
Ruzhansky, Michael .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (15-16) :847-851
[7]  
Dos Santos Ferreira D, 2014, MEM AM MATH SOC, V229, P1074
[8]  
Duistermaat J. J., 1996, PROGR MATH, V130
[9]  
Eskin G. I., 1970, MAT SBORNIK, V82, P585
[10]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215