Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts

被引:155
作者
Hu, Bing [1 ]
Yin, Yazhi [1 ]
Liu, Guoliang [1 ]
Chen, Shengli [1 ]
Hong, Xinlin [1 ]
Tsang, Shik Chi Edman [2 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China
[2] Univ Oxford, Dept Chem, Wolfson Catalysis Ctr, Oxford OX1 3QR, England
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; Hydrogen spillover; Pd doped CuZn catalysts; Activated Cu surface; Active sites; CARBON-DIOXIDE; CU/ZNO/AL2O3; CATALYSTS; CU-ZNO/ZRO2; SILVER NANOPARTICLES; CO2/H-2; MIXTURES; SURFACE-AREA; ZN CATALYSTS; COPPER; PERFORMANCE; METAL;
D O I
10.1016/j.jcat.2017.12.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface modification with Pd is an effective way for improved activity in CO2 hydrogenation to methanol over commercial Cu-ZnO catalysts via a so-called hydrogen spillover mechanism. However, there still lacks a quantitative analysis of hydrogen spillover effect and the nature of active sites after Pd modification remains unclear. In this work, we prepared a series of Pd-doped Cu-ZnO catalysts (Pd-CZ-x) with tunable Pd loading by using a facile polyol reduction method for a deep study of the promotion effect of Pd. With the increase of Pd/Cu molar ratio (x) from 0 to 0.04, there emerges a volcano-shaped relationship between methanol space time yield (STY) and Pd loading. 1% Pd doping can increase the methanol STY by 2.5 times and the methanol turnover frequency (TOF) by 3.5 times at 543 K, when compared to undoped Cu-ZnO. Kinetic studies show the activation energy required for methanol synthesis is greatly reduced from 59 kJ morl over Cu-ZnO to 31 kJ mol(-1) over Pd-CZ-0.01. Behind the volcano-shaped relationship is a balance between the hydrogen spillover effect of Pd and the reduced surface Cu area caused by Pd blocking. Chemisorption gives a quantitative analysis of an important type of activated Cu sites enabled by hydrogen spillover (Cubs). Importantly, it is found that the methanol STY correlates linearly with Cuhs surface area, suggesting that the activated Cu sites with the assistance of ZnO are real active sites for methanol synthesis from CO2 hydrogenation. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 51 条
[1]   Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH [J].
Arena, Francesco ;
Italiano, Giuseppe ;
Barbera, Katia ;
Bordiga, Silvia ;
Bonura, Giuseppe ;
Spadaro, Lorenzo ;
Frusteri, Francesco .
APPLIED CATALYSIS A-GENERAL, 2008, 350 (01) :16-23
[2]   Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol [J].
Arena, Francesco ;
Barbera, Katia ;
Italiano, Giuseppe ;
Bonura, Giuseppe ;
Spadaro, Lorenzo ;
Frusteri, Francesco .
JOURNAL OF CATALYSIS, 2007, 249 (02) :185-194
[3]   Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO2 hydrogenation [J].
Arena, Francesco ;
Mezzatesta, Giovanni ;
Zafarana, Giovanni ;
Trunfio, Giuseppe ;
Frusteri, Francesco ;
Spadaro, Lorenzo .
JOURNAL OF CATALYSIS, 2013, 300 :141-151
[4]   PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI) [J].
Bahruji, H. ;
Bowker, M. ;
Jones, W. ;
Hayward, J. ;
Esquius, J. Ruiz ;
Morgan, D. J. ;
Hutchings, G. J. .
FARADAY DISCUSSIONS, 2017, 197 :309-324
[5]   Pd/ZnO catalysts for direct CO2 hydrogenation to methanol [J].
Bahruji, Hasliza ;
Bowker, Michael ;
Hutchings, Graham ;
Dimitratos, Nikolaos ;
Wells, Peter ;
Gibson, Emma ;
Jones, Wilm ;
Brookes, Catherine ;
Morgan, David ;
Lalev, Georgi .
JOURNAL OF CATALYSIS, 2016, 343 :133-146
[6]  
Behrens M, 2012, SCIENCE, V336, P893, DOI [10.1126/science.1219831, 10.1126/science.12198331]
[7]   Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies [J].
Beinik, Igor ;
Hellstrom, Matti ;
Jensen, Thomas N. ;
Broqvist, Peter ;
Lauritsen, Jeppe V. .
NATURE COMMUNICATIONS, 2015, 6
[8]   Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol [J].
Bonet, F ;
Delmas, V ;
Grugeon, S ;
Urbina, RH ;
Silvert, PY ;
Tekaia-Elhsissen, K .
NANOSTRUCTURED MATERIALS, 1999, 11 (08) :1277-1284
[9]   THE ROLE OF COPPER AND ZINC-OXIDE IN METHANOL SYNTHESIS CATALYSTS [J].
BURCH, R ;
GOLUNSKI, SE ;
SPENCER, MS .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1990, 86 (15) :2683-2691
[10]   Highly active CNT-promoted Cu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2 [J].
Dong, X ;
Zhang, HB ;
Lin, GD ;
Yuan, YZ ;
Tsai, KR .
CATALYSIS LETTERS, 2003, 85 (3-4) :237-246