CONSTRUCTIVE PROJECTIVE EXTENSION OF AN INCIDENCE PLANE

被引:0
作者
Mandelkern, Mark [1 ]
机构
[1] New Mexico State Univ, Dept Math, Las Cruces, NM 88003 USA
关键词
Projective extension; incidence plane; constructive mathematics;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A standard procedure in classical projective geometry, using pencils of lines to extend an incidence plane to a projective plane, is examined from a constructive viewpoint. Brouwerian counterexamples reveal the limitations of traditional pencils. Generalized definitions are adopted to construct a projective extension. The main axioms of projective geometry are verified. The methods used are in accordance with Bishop-type modern constructivism.
引用
收藏
页码:691 / 706
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 1985, Math. Mag.
[2]   FOUNDATIONS OF INTUITIONISTIC MATHEMATICS [J].
BISHOP, E .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 71 (06) :850-&
[3]  
Bishop E., 1985, CONSTRUCTIVE ANAL
[4]  
Bishop E., 1967, FDN CONSTRUCTIVE ANA
[5]  
Bridges D., 1987, VARIETIES CONSTRUCTI
[6]  
Brouwer L. E. J., 1908, Tijdschrift Wijsbegeerte, V2, P152
[7]  
Heyting A., 1959, AXIOMATIC METHOD, P160, DOI [10.1016/S0049-237X(09)70026-6, DOI 10.1016/S0049-237X(09)70026-6]
[8]   LIMITED OMNISCIENCE AND THE BOLZANO-WEIERSTRASS PRINCIPLE [J].
MANDELKERN, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :319-320
[9]  
Mandelkern M., 1983, MEM AM MATH SOC, V42
[10]  
Mandelkern M., 2007, BEITRAGE ALGEBRA GEO, V48, P547