Local biquandles and Niebrzydowski's tribracket theory

被引:10
作者
Nelson, Sam [1 ]
Oshiro, Kanako [2 ]
Oyamaguchi, Natsumi [3 ]
机构
[1] Claremont Mckenna Coll, Dept Math Sci, Claremont, CA 91711 USA
[2] Sophia Univ, Dept Informat & Commun Sci, Tokyo 1028554, Japan
[3] Shumei Univ, Dept Teacher Educ, Chiba 2760003, Japan
关键词
Link; Surface-link; Tribracket; Local biquandle; Region coloring; Semi-arc coloring; (Co)homology group; Cocycle invariant; INVARIANTS;
D O I
10.1016/j.topol.2019.01.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new algebraic structure called local biquandles and show how colorings of oriented classical link diagrams and of broken surface diagrams are related to tribracket colorings. We define a (co)homology theory for local biquandles and show that it is isomorphic to Niebrzydowski's tribracket (co)homology. This implies that Niebrzydowski's (co)homology theory can be interpreted similarly as biquandle (co)homology theory. Moreover through the isomorphism between two cohomology groups, we show that Niebrzydowski's cocycle invariants and local biquandle cocycle invariants are the same. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:474 / 512
页数:39
相关论文
共 21 条
  • [1] [Anonymous], 1998, Banach Center Publications
  • [2] Quandle cohomology and state-sum invariants of knotted curves and surfaces
    Carter, JS
    Jelsovsky, D
    Kamada, S
    Langford, L
    Saito, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) : 3947 - 3989
  • [3] Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles
    Carter, JS
    Elhamdadi, M
    Saito, M
    [J]. FUNDAMENTA MATHEMATICAE, 2004, 184 : 31 - 54
  • [4] Geometric interpretations of quandle homology
    Carter, JS
    Kamada, S
    Saito, M
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (03) : 345 - 386
  • [5] Augmented biracks and their homology
    Ceniceros, Jose
    Elhamdadi, Mohamed
    Green, Matthew
    Nelson, Sam
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (09)
  • [6] Choi W., ARXIV170402555
  • [7] Elhamdadi M., 2015, STUDENT MATH LIB, V74
  • [8] Trunks and classifying spaces
    Fenn, R
    Rourke, C
    Sanderson, B
    [J]. APPLIED CATEGORICAL STRUCTURES, 1995, 3 (04) : 321 - 356
  • [9] FENN R, 1993, NATO ADV SCI INST SE, V399, P33
  • [10] FENN R., 1992, J. Knot Theory Ramifications, V1, P343