A CLASS OF NONPARAMETRIC DSSY NONCONFORMING QUADRILATERAL ELEMENTS

被引:9
作者
Jeon, Youngmok [1 ]
Nam, Hyun [2 ]
Sheen, Dongwoo [2 ,3 ]
Shim, Kwangshin [2 ]
机构
[1] Ajou Univ, Dept Math, Suwon 443749, South Korea
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[3] Seoul Natl Univ, Interdisciplinary Program Computat Sci & Technol, Seoul 151747, South Korea
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2013年 / 47卷 / 06期
关键词
Nonconforming; finite element; quadrilateral; 2ND-ORDER ELLIPTIC PROBLEMS; FINITE-ELEMENT; STATIONARY STOKES; INCOMPRESSIBLE ELASTICITY; PATCH TEST; EQUATIONS; CONVERGENCE;
D O I
10.1051/m2an/2013088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new class of nonparametric nonconforming quadrilateral finite elements is introduced which has the midpoint continuity and the mean value continuity at the interfaces of elements simultaneously as the rectangular DSSY element [J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, ESAIM: M2AN 33 (1999) 747-770.] The parametric DSSY element for general quadrilaterals requires five degrees of freedom to have an optimal order of convergence [Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Calcolo 37 (2000) 253-254.], while the new nonparametric DSSY elements require only four degrees of freedom. The design of new elements is based on the decomposition of a bilinear transform into a simple bilinear map followed by a suitable affine map. Numerical results are presented to compare the new elements with the parametric DSSY element.
引用
收藏
页码:1783 / 1796
页数:14
相关论文
共 22 条