Pieri rules for Schur functions in superspace

被引:10
作者
Jones, Miles [1 ]
Lapointe, Luc [2 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci, 9500 Gilman Dr 0404, La Jolla, CA 92093 USA
[2] Univ Talca, Inst Matemat & Fis, Casilla 747, Talca, Chile
关键词
Schur functions; Key polynomials; Symmetric functions in superspace; MACDONALD POLYNOMIALS;
D O I
10.1016/j.jcta.2016.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Schur functions in superspace s(Lambda) and (s) over bar (Lambda) are the limits q = t = 0 and q = t = infinity respectively of the Macdonald polynomials in superspace. We prove Pieri rules for the bases s(Lambda) and (s) over bar (Lambda) (which happen to be essentially dual). As a consequence, we derive the basic properties of these bases such as dualities, monomial expansions, and tableaux generating functions. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:57 / 115
页数:59
相关论文
共 14 条
  • [1] [Anonymous], 1999, CAMBRIDGE STUD ADV M
  • [2] Double Macdonald polynomials as the stable limit of Macdonald superpolynomials
    Blondeau-Fournier, O.
    Lapointe, L.
    Mathieu, P.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 397 - 459
  • [3] Blondeau-Fournier O., ARXIV14082807
  • [4] Blondeau-Fournier O, 2012, J COMB, V3, P495
  • [5] Macdonald Polynomials in Superspace: Conjectural Definition and Positivity Conjectures
    Blondeau-Fournier, Olivier
    Desrosiers, Patrick
    Lapointe, Luc
    Mathieu, Pierre
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2012, 101 (01) : 27 - 47
  • [6] Overpartitions
    Corteel, S
    Lovejoy, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) : 1623 - 1635
  • [7] Orthogonality of Jack polynomials in superspace
    Desrosiers, Patrick
    Lapointe, Luc
    Mathieu, Pierre
    [J]. ADVANCES IN MATHEMATICS, 2007, 212 (01) : 361 - 388
  • [8] Classical symmetric functions in superspace
    Desrosiers, Patrick
    Lapointe, Luc
    Mathieu, Pierre
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (02) : 209 - 238
  • [9] Hilbert schemes, polygraphs and the Macdonald positivity conjecture
    Haiman, M
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) : 941 - 1006
  • [10] Nonsymmetric Macdonald polynomials and Demazure characters
    Ion, B
    [J]. DUKE MATHEMATICAL JOURNAL, 2003, 116 (02) : 299 - 318