Hydride destabilization in core-shell nanoparticles

被引:34
|
作者
Pasquini, L. [1 ]
Sacchi, M. [1 ]
Brighi, M. [1 ]
Boelsma, C. [2 ]
Bals, S. [3 ]
Perkisas, T. [3 ]
Dam, B. [2 ]
机构
[1] Univ Bologna, Dept Phys & Astron, I-40127 Bologna, Italy
[2] Delft Univ Technol, Fac Sci Appl, Dept Chem Engn, NL-2628 BL Delft, Netherlands
[3] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium
关键词
Hydrogen storage; Nanoparticles; Core-shell; Enthalpy; Thermodynamics; Elastic constraint; HYDROGEN-STORAGE; THERMODYNAMICS; CLUSTERS;
D O I
10.1016/j.ijhydene.2013.11.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a model that describes the effect of elastic constraint on the thermodynamics of hydrogen absorption and desorption in biphasic core-shell nanoparticles, where the core is a hydride forming metal. In particular, the change of the hydride formation enthalpy and of the equilibrium pressure for the metal/hydride transformation are described as a function of nanoparticles radius, shell thickness, and elastic properties of both core and shell. To test the model, the hydrogen sorption isotherms of Mg-MgO core-shell nanoparticles, synthesized by inert gas condensation, were measured by means of optical hydrogenography. The model's predictions are in good agreement with the experimentally determined plateau pressure of hydrogen absorption. The features that a core-shell systems should exhibit in view of practical hydrogen storage applications are discussed with reference to the model and the experimental results. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2115 / 2123
页数:9
相关论文
共 50 条
  • [21] Au@Rh core-shell nanoparticles with dendritic structure
    Jiao, Jiao
    Liu, Xiaojun
    He, Hong
    MATERIALS LETTERS, 2014, 131 : 336 - 339
  • [22] Preparation and characteristics of core-shell structure nickel/silica nanoparticles
    Fu, WY
    Yang, HB
    Chang, LX
    Li, MH
    Bala, H
    Yu, QJ
    Zou, GT
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2005, 262 (1-3) : 71 - 75
  • [23] Phase Separation in AgCu and AgNi Core-Shell Icosahedral Nanoparticles: A Harmonic Thermodynamics Study
    Bonventre, Daniele
    Panizon, Emanuele
    Ferrando, Riccardo
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2018, 35 (05)
  • [24] Ag@Pd core-shell nanoparticles
    Jose, Deepa
    Jagirdar, Balaji R.
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2011, 50 (9-10): : 1308 - 1317
  • [25] Plasmonic enhancement using core-shell nanoparticles
    Stranik, O
    Nooney, R
    McDonagh, C
    MacCraith, BD
    Opto-Ireland 2005: Nanotechnology and Nanophotonics, 2005, 5824 : 79 - 85
  • [26] Novel highly ordered core-shell nanoparticles
    Dey, Sonal
    Hossain, Mohammad D.
    Mayanovic, Robert A.
    Wirth, Richard
    Gordon, Robert A.
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (04) : 2066 - 2076
  • [27] Morphological instability of core-shell metallic nanoparticles
    Bochicchio, Davide
    Ferrando, Riccardo
    PHYSICAL REVIEW B, 2013, 87 (16)
  • [28] Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles
    Loukanov, AR
    Dushkin, CD
    Papazova, KI
    Kirov, AV
    Abrashev, MV
    Adachi, E
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 245 (1-3) : 9 - 14
  • [29] Size-selective breaking of the core-shell structure of gallium nanoparticles
    Catalan-Gomez, S.
    Redondo-Cubero, A.
    Palomares, F. J.
    Vazquez, L.
    Nogales, E.
    Nucciarelli, F.
    Mendez, B.
    Gordillo, N.
    Pau, J. L.
    NANOTECHNOLOGY, 2018, 29 (35)
  • [30] Fabrication of polyacrylate core-shell nanoparticles via spray drying method
    Chen, Pengpeng
    Cheng, Zenghui
    Chu, Fuxiang
    Xu, Yuzhi
    Wang, Chunpeng
    JOURNAL OF NANOPARTICLE RESEARCH, 2016, 18 (05)