Edge residuals dominate A posteriori error estimates for low order finite element methods

被引:136
作者
Carsten, C
Verfürth, R
机构
[1] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[2] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
关键词
a posteriori error estimators; edge residuals; low order finite elements;
D O I
10.1137/S003614299732334X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, up to higher order perturbation terms, edge residuals yield global upper and local lower bounds on the error of linear finite element methods both in H-1- and L-2-norms. We present two proofs: one uses the standard L-2-projection and the other relies on a new, weighted Clement-type interpolation operator.
引用
收藏
页码:1571 / 1587
页数:17
相关论文
共 12 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[3]  
BANSCH E, IN PRESS NUMER MATH
[4]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[5]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[6]   THE STABILITY IN LP AND W-P-1 OF THE L2-PROJECTION ONTO FINITE-ELEMENT FUNCTION-SPACES [J].
CROUZEIX, M ;
THOMEE, V .
MATHEMATICS OF COMPUTATION, 1987, 48 (178) :521-532
[7]  
Verfurth R, 1998, ESAIM-MATH MODEL NUM, V32, P817
[9]   A-POSTERIORI ERROR ESTIMATION AND ADAPTIVE MESH-REFINEMENT TECHNIQUES [J].
VERFURTH, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 50 (1-3) :67-83
[10]  
Verfurth R., 1996, A review of a posteriori error estimation and adaptive-mesh-refinement techniques