DISCRIMINATING CODES IN BIPARTITE GRAPHS: BOUNDS, EXTREMAL CARDINALITIES, COMPLEXITY

被引:20
作者
Charbit, Emmanuel [1 ]
Charon, Irene [1 ,2 ]
Cohen, Gerard [1 ,2 ]
Hudry, Olivier [1 ,2 ]
Lobstein, Antoine [1 ,2 ]
机构
[1] TELECOM ParisTech, Inst TELECOM, F-75634 Paris 13, France
[2] CNRS, LTCI, UMR 5141, F-75634 Paris 13, France
关键词
Graph theory; bipartite graphs; discriminating codes; identifying codes; locating-dominating codes; separating codes; complexity;
D O I
10.3934/amc.2008.2.403
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider an undirected bipartite graph G = (V = I boolean OR A, E), with no edge inside I nor A. For any vertex v is an element of V, let N(v) be the set of neighbours of v. A code C subset of A is said to be discriminating if all the sets N(i) boolean AND C, i is an element of I, are nonempty and distinct. We study some properties of discriminating codes. In particular, we give bounds on the minimum size of these codes, investigate graphs where minimal discriminating codes have size close to the upper bound, or give the exact minimum size in particular graphs; we also give an NP-completeness result.
引用
收藏
页码:403 / 420
页数:18
相关论文
共 36 条
  • [21] Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes
    Sason, Igal
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 219 - 223
  • [22] The extremal values of some topological indices in bipartite graphs with a given matching number
    Chen, Hanlin
    Wu, Renfang
    Deng, Hanyuan
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 280 : 103 - 109
  • [23] Weighted coloring on planar, bipartite and split graphs: Complexity and approximation
    de Werra, D.
    Demange, M.
    Escoffier, B.
    Monnot, J.
    Paschos, V. Th.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 819 - 832
  • [24] Clustering bipartite and chordal graphs: Complexity, sequential and parallel algorithms
    Abbas, N
    Stewart, L
    DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 1 - 23
  • [25] Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter
    Li, Shuchao
    Zhang, Minjie
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 131 - 137
  • [26] On the complexity of finding chordless paths in bipartite graphs and some interval operators in graphs and hypergraphs
    Mezzini, Mauro
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (7-9) : 1212 - 1220
  • [27] Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter
    Wang, Chunxiang
    Liu, Jia-Bao
    Wang, Shaohui
    DISCRETE APPLIED MATHEMATICS, 2017, 227 : 156 - 165
  • [28] Sharp bounds for the number of 3-independent partitions and the chromaticity of bipartite graphs
    Dong, FM
    Koh, KM
    Teo, KL
    Little, CHC
    Hendy, MD
    JOURNAL OF GRAPH THEORY, 2001, 37 (01) : 48 - 77
  • [29] The complexity of the L(p, q)-labeling problem for bipartite planar graphs of small degree
    Janczewski, Robert
    Kosowski, Adrian
    Malafiejski, Michal
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3270 - 3279
  • [30] On achievable rates and complexity of LDPC codes over parallel channels: Bounds and applications
    Sason, Igal
    Wiechman, Gil
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) : 580 - 598