Binding Ni(II) ions to chitosan and its N-heterocyclic derivatives: Density functional theory investigation

被引:17
作者
Portnyagin, A. S. [1 ]
Bratskaya, S. Yu. [1 ]
Pestov, A. V. [2 ]
Voit, A. V. [1 ]
机构
[1] Russian Acad Sci, Far Eastern Branch, Inst Chem, Vladivostok 690022, Russia
[2] Russian Acad Sci, Ural Branch, I Ya Postovsky Inst Organ Synth, Ekaterinburg 620990, Russia
基金
俄罗斯科学基金会;
关键词
DFT; Chitosan; Imidazole; Pyridyl; Complexation; Nickel; COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS; METAL COMPLEXATION; HG2+ ADSORPTION; COPPER-II; CHITIN; ATOMS; EFFICIENT; BIOPOLYMERS; POLYMER;
D O I
10.1016/j.comptc.2015.07.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here we report the results of density functional theory (DFT) investigations of Ni2+ complexes with chitosan and its N-heterocyclic derivatives N-(2-pyridylethyl) chitosan (2-PEC), N-(4-pyridylethyl)-chitosan (4-PEC), and N-(5-methyl-4-imidazolyl)methyl chitosan (IMC). 11 model structures corresponding to 'bridge' and 'pendant' types of complexes have been calculated. We have shown that in most cases formation of 'pendant' complexes is more favorable. It was found that nitrogen atoms of chitosan and its N-heterocyclic derivatives played a governing role in Ni2+ binding and that the degree of charge transfer from the ligand to the central ion in the complexes correlated with the complex stability. A row of complexes stability depending on the type of functional substitute in chitosan macromolecules (IMC approximate to 2-PEC > chitosan > 4-PEC) was in a good agreement with experimental data obtained from the nickel ion sorption isotherms on chitosan, 2-PEC, 4-PEC and IMC. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:4 / 10
页数:7
相关论文
共 52 条
[1]   Selective extraction of gold(III) from metal chloride mixtures using ethylenediamine N-(2-(1-imidazolyl)ethyl) chitosan ion-imprinted polymer [J].
Ahamed, M. E. H. ;
Mbianda, X. Y. ;
Mulaba-Bafubiandi, A. F. ;
Marjanovic, L. .
HYDROMETALLURGY, 2013, 140 :1-13
[2]   Controlling the orientation of immobilized proteins on an affinity membrane through chelation of a histidine tag to a chitosan-Ni++ surface [J].
Ahmed, Sufi R. ;
Kelly, Alexander B. ;
Barbari, Timothy A. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 280 (1-2) :553-559
[3]   Density functional studies of Cu2+ and Ni2+ binding to chitosan [J].
Braier, NC ;
Jishi, RA .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 499 :51-55
[4]   Synthesis and properties of isomeric pyridyl-containing chitosan derivatives [J].
Bratskaya, S. Yu ;
Azarova, Yu A. ;
Portnyagin, A. S. ;
Mechaev, A. V. ;
Voit, A. V. ;
Pestov, A. V. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 62 :426-432
[5]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[6]   Nickel(II) compounds of a tri-amine mono-imine macrocycle: Preparations and structures of (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradec-4-ene)nickel(II) compounds [J].
Curtis, Neil F. ;
Wikaira, Jan .
POLYHEDRON, 2011, 30 (05) :895-902
[7]  
Debbaudt A, 2001, MACROMOL BIOSCI, V1, P249, DOI 10.1002/1616-5195(20010801)1:6<249::AID-MABI249>3.0.CO
[8]  
2-G
[9]   Development of a new chitosan/Ni(OH)2-based sorbent for boron removal [J].
Demey, H. ;
Vincent, T. ;
Ruiz, M. ;
Sastre, A. M. ;
Guibal, E. .
CHEMICAL ENGINEERING JOURNAL, 2014, 244 :576-586