Exact solutions for nonlinear variants of Kadomtsev-Petviashvili (n, n) equation using functional variable method

被引:16
作者
Mirzazadeh, M. [1 ]
Eslami, M. [2 ]
机构
[1] Univ Guilan, Dept Engn Sci, Fac Engn & Technol, Rudsar, Iran
[2] Univ Mazandaran, Dept Math, Fac Math Sci, Babol Sar, Iran
来源
PRAMANA-JOURNAL OF PHYSICS | 2013年 / 81卷 / 06期
关键词
Functional variable method; compacton; solitary pattern; Kadomtsev-Petviashvili equation; SOLITON-SOLUTIONS; TANH METHOD; COMPACT; KDV;
D O I
10.1007/s12043-013-0632-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Studying compactons, solitons, solitary patterns and periodic solutions is important in nonlinear phenomena. In this paper we study nonlinear variants of the Kadomtsev-Petviashvili (KP) and the Korteweg-de Vries (KdV) equations with positive and negative exponents. The functional variable method is used to establish compactons, solitons, solitary patterns and periodic solutions for these variants. This method is a powerful tool for searching exact travelling solutions in closed form.
引用
收藏
页码:911 / 924
页数:14
相关论文
共 24 条
  • [1] The first integral method for constructing exact and explicit solutions to nonlinear evolution equations
    Aslan, Ismail
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (06) : 716 - 722
  • [2] Exact and explicit solutions to nonlinear evolution equations using the division theorem
    Aslan, Ismail
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 8134 - 8139
  • [3] Biswas A., 2011, Open Nucl. Part. Phys. J, V4, P21, DOI [10.2174/1874415X01104010021, DOI 10.2174/1874415X01104010021]
  • [4] Chiral Solitons With Time-Dependent Coefficients
    Biswas, Anjan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (01) : 79 - 83
  • [5] Properties of compacton-anticompacton collisions
    Cardenas, Andres
    Mihaila, Bogdan
    Cooper, Fred
    Saxena, Avadh
    [J]. PHYSICAL REVIEW E, 2011, 83 (06)
  • [6] A procedure to construct exact solutions of nonlinear evolution equations
    Cevikel, Adem Cengiz
    Bekir, Ahmet
    Akar, Mutlu
    San, Sait
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (03): : 337 - 344
  • [7] SOLITARY WAVES IN A CLASS OF GENERALIZED KORTEWEG-DEVRIES EQUATIONS
    COOPER, F
    SHEPARD, H
    SODANO, P
    [J]. PHYSICAL REVIEW E, 1993, 48 (05): : 4027 - 4032
  • [8] 1-Soliton solution of the generalized KP equation with generalized evolution
    Ismail, M. S.
    Petkovic, Marko D.
    Biswas, Anjan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 2220 - 2225
  • [9] Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
  • [10] ONE-PARAMETER FAMILY OF SOLITON-SOLUTIONS WITH COMPACT SUPPORT IN A CLASS OF GENERALIZED KORTEWEG-DE VRIES EQUATIONS
    KHARE, A
    COOPER, F
    [J]. PHYSICAL REVIEW E, 1993, 48 (06): : 4843 - 4844