ROBUST ADAPTIVE CONTROL BASED ON MACHINE LEARNING AND NTSMC FOR WORKPIECE SURFACE-GRINDING ROBOT

被引:4
作者
Jia, Lin [1 ,2 ]
Wang, Yaonan [1 ,2 ]
He, Jing [3 ]
Liu, Li [1 ,2 ]
Li, Zhen [1 ,2 ]
Shen, Yongpeng [4 ]
机构
[1] Hunan Univ, Dept Control Sci & Engn, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Dept Intelligent Mfg, Natl Engn Lab Robot Visual Percept & Control Tech, Changsha 410082, Peoples R China
[3] Hunan Univ Technol, Coll Elect & Informat Engn, Dept Control Sci & Engn, Zhuzhou 421000, Peoples R China
[4] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Dept Automat, Zhengzhou 450001, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Adaptive control; machine learning; nonsingular terminal sliding mode control; engine block; workpiece surface-grinding robot; SLIDING MODE CONTROL; NEURAL-NETWORK CONTROL; TRACKING CONTROL; MANIPULATORS;
D O I
10.2316/J.2020.206-0449
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a robust adaptive trajectory tracking control method is presented for the workpiece surface-grinding robot. The workpiece surface-grinding robot is a highly nonlinear complex system, and it is difficult to describe its dynamic characteristics accurately. The system dynamics can be identified by the appropriate machine learning method. The adaptive law is proposed to adjust the neural network weights. To avoid the long convergence time and control singularity of the system, the nonsingular terminal sliding mode control (NTSMC) is employed to solve the disturbance, joint friction, and approximation error of the adaptive machine learning. The characteristics of the presented control scheme are illustrated through simulations and experiments, in which the convergence time decreases from 0.8s to 0.6s, and the amplitude of static error decreases from 0.025 rad to 0.02 rad.
引用
收藏
页码:444 / 453
页数:10
相关论文
共 41 条
[1]   Robust compound control of dynamic bipedal robots [J].
Arcos-Legarda, Jaime ;
Cortes-Romero, John ;
Tovar, Andres .
MECHATRONICS, 2019, 59 :154-167
[2]   RBFNN-based nonsingular fast terminal sliding mode control for robotic manipulators including actuator dynamics [J].
Chen, Ziyang ;
Yang, Xiaohui ;
Liu, Xiaoping .
NEUROCOMPUTING, 2019, 362 :72-82
[3]   ADAPTIVE TERMINAL SLIDING MODE BASED SENSORLESS SPEED CONTROL FOR UNDERWATER THRUSTER [J].
Chu, Zhenzhong ;
Zhu, Daqi ;
Yang, Simon X. .
INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2016, 31 (03) :187-197
[4]  
Costa TL, 2018, IEEE LAT AM T, V16, P398
[5]   A direct robust nonsingular terminal sliding mode controller based on an adaptive time-delay estimator for servomotor rigid robots [J].
Dang Xuan Ba ;
Yeom, Hoyeon ;
Bae, Joonbum .
MECHATRONICS, 2019, 59 :82-94
[6]   Adaptive locomotion control of hexapod walking robot for traversing rough terrains with position feedback only [J].
Faigl, Jan ;
Cizek, Petr .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 116 :136-147
[7]   Nonsingular fast terminal sliding mode posture control for six-legged walking robots with redundant actuation [J].
Gang, Chen ;
Bo, Jin ;
Ying, Chen .
MECHATRONICS, 2018, 50 :1-15
[8]  
Ge S. S., 1998, ADAPTIVE NEURAL NETW
[9]   Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback [J].
Gracia, Luis ;
Ernesto Solanes, J. ;
Munoz-Benavent, Pau ;
Miro, Jaime Valls ;
Perez-Vidal, Carlos ;
Tornero, Josep .
MECHATRONICS, 2018, 52 :102-118
[10]   RING COUPLING-BASED COLLABORATIVE FAULT-TOLERANT CONTROL FOR MULTI-ROBOT ACTUATOR FAULT [J].
He, Jing ;
Mi, Lin ;
Liu, Jianhua ;
Cheng, Xiang ;
Lin, Zhenzhen ;
Zhang, Changfan .
INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2018, 33 (06) :672-680