The closed state space of affine Landau-Ginzburg B-models

被引:22
作者
Segal, Ed [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Landau-Ginzburg models; Hochschild homology; B-model; matrix factorizations; COHOMOLOGY;
D O I
10.4171/JNCG/137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the category of perfect cdg-modules over a curved algebra, and in particular the category of B-branes in an affine Landau-Ginzburg model. We construct an explicit chain map from the Hochschild complex of the category to the closed state space of the model, and prove that this is a quasi-isomorphism from the Borel-Moore Hochschild complex. Using the lowest-order term of our map we derive Kapustin and Li's formula for the correlator of an open-string state over a disc.
引用
收藏
页码:857 / 883
页数:27
相关论文
共 23 条
[1]  
AUSLANDER M., 1978, Lecture Notes in Pure Appl. Math., V37, P1
[2]   Orbifold cohomology as periodic cyclic homology [J].
Baranovsky, V .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (08) :791-812
[3]  
Caldararu A, 2013, NEW YORK J MATH, V19, P305
[4]   Matrix factorisations and open topological string theory [J].
Carqueville, Nils .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (07)
[5]  
Cho C.-H., 2010, PREPRINT
[6]   Topological conformal field theories and Calabi-Yau categories [J].
Costello, Kevin .
ADVANCES IN MATHEMATICS, 2007, 210 (01) :165-214
[7]   The Kapustin-Li formula revisited [J].
Dyckerhoff, Tobias ;
Murfet, Daniel .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1858-1885
[8]   COMPACT GENERATORS IN CATEGORIES OF MATRIX FACTORIZATIONS [J].
Dyckerhoff, Tobias .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (02) :223-274
[9]   A-INFINITY-ALGEBRAS AND THE CYCLIC BAR COMPLEX [J].
GETZLER, E ;
JONES, JDS .
ILLINOIS JOURNAL OF MATHEMATICS, 1990, 34 (02) :256-283
[10]  
Hartshorne R., 1966, LECT NOTES MATH, V20