Impact of Automatic Feature Extraction in Deep Learning Architecture

被引:0
作者
Shaheen, Fatma [1 ]
Verma, Brijesh [1 ]
Asafuddoula, Md [1 ]
机构
[1] Cent Queensland Univ, Ctr Intelligent Syst, Brisbane, Qld, Australia
来源
2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA) | 2016年
关键词
Image Classification; Feature Extraction; Deep-Learning; Convolutional Neural Network; Multi-Layer Perceptron;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents the impact of automatic feature extraction used in a deep learning architecture such as Convolutional Neural Network (CNN). Recently CNN has become a very popular tool for image classification which can automatically extract features, learn and classify them. It is a common belief that CNN can always perform better than other well-known classifiers. However, there is no systematic study which shows that automatic feature extraction in CNN is any better than other simple feature extraction techniques, and there is no study which shows that other simple neural network architectures cannot achieve same accuracy as CNN. In this paper, a systematic study to investigate CNN's feature extraction is presented. CNN with automatic feature extraction is firstly evaluated on a number of benchmark datasets and then a simple traditional Multi-Layer Perceptron (MLP) with full image, and manual feature extraction are evaluated on the same benchmark datasets. The purpose is to see whether feature extraction in CNN performs any better than a simple feature with MLP and full image with MLP. Many experiments were systematically conducted by varying number of epochs and hidden neurons. The experimental results revealed that traditional MLP with suitable parameters can perform as good as CNN or better in certain cases.
引用
收藏
页码:638 / 645
页数:8
相关论文
共 50 条
  • [41] Hyperspectral Data Feature Extraction Using Deep Learning Hybrid Model
    Jiang, Xinhua
    Xue, Heru
    Zhang, Lina
    Gao, Xiaojing
    Zhou, Yanqing
    Bai, Jie
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (04) : 3529 - 3543
  • [42] Feature Extraction for Side Scan Sonar Image Based on Deep Learning
    Tang, Yanghua
    Wang, Hongjian
    Xiao, Yao
    Gao, Wei
    Wang, Zhao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8416 - 8421
  • [43] Evolving Deep Forest with Automatic Feature Extraction for Image Classification Using Genetic Programming
    Bi, Ying
    Xue, Bing
    Zhang, Mengjie
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVI, PT I, 2020, 12269 : 3 - 18
  • [44] Driver Identification Based on Hidden Feature Extraction by Using Deep Learning
    Chen, Jie
    Wu, ZhongCheng
    Zhang, Jun
    Chen, Song
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 1765 - 1768
  • [45] Deep learning based text detection using resnet for feature extraction
    Huang, Li-Kun
    Tseng, Hsiao-Ting
    Hsieh, Chen-Chiung
    Yang, Chih-Sin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 46871 - 46903
  • [46] Multigranularity Feature Automatic Marking-Based Deep Learning for Anomaly Detection of Industrial Control Systems
    Du, Xinyi
    Xu, Chi
    Li, Lin
    Li, Xinchun
    IEEE OPEN JOURNAL OF INSTRUMENTATION AND MEASUREMENT, 2024, 3
  • [47] EEG signal processing by feature extraction and classification based on biomedical deep learning architecture with wireless communication
    Sodagudi, Suhasini
    Manda, Sridhar
    Smitha, Bandi
    Chaitanya, N.
    Ahmed, Mohammed Altaf
    Deb, Nabamita
    OPTIK, 2022, 270
  • [48] Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning
    Gao, Xinting
    Lin, Stephen
    Wong, Tien Yin
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (11) : 2693 - 2701
  • [49] Multi-modal deep learning architecture for enhanced feature extraction and classification of imagined speech words
    Mohan, Anand
    Anand, R. S.
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [50] Flow feature extraction models based on deep learning
    Zhan Qing-Liang
    Ge Yao-Jun
    Bai Chun-Jin
    ACTA PHYSICA SINICA, 2022, 71 (07)