Three-dimensional stress intensity factors of a central square crack in a transversely isotropic cuboid with arbitrary material orientations

被引:6
作者
Chen, Chao-Shi [1 ]
Chen, Chia-Hau [1 ]
Pan, Ernian [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Resources Engn, Tainan 701, Taiwan
[2] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA
关键词
Dual-BEM; Single-domain BEM; Transverse isotropy; Three dimensions; stress intensity factor; Crack opening displacement; Rock anisotropy; BOUNDARY-ELEMENT METHOD; ELASTICITY PROBLEMS; INTEGRAL-EQUATIONS; FRACTURE-MECHANICS; ANISOTROPIC MEDIA; FORMULATION; SOLIDS; BEM;
D O I
10.1016/j.enganabound.2008.06.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present the dual boundary element method (dual-BEM) or single-domain BEM to analyze the mixed three-dimensional (3D) stress intensity factors (SIFs) in a finite and transversely isotropic solid containing an internal square crack. The planes of both the transverse isotropy and square crack can be oriented arbitrarily with respect to a fixed global coordinate system. A set of four special nine-node quadrilateral elements are utilized to approximate the crack front as well as the Outer boundary, and the mixed 3D SIFs are evaluated using the asymptotic relation between the SIFs and the relative crack opening displacements (COD) via the Barnett-Lothe tensor. Numerical examples are presented for a cracked cuboid which is transversely isotropic with any given orientation and is under a uniform vertical traction on its top and bottom surfaces. The square crack is located in the center of the cuboid but is oriented arbitrarily. Our results show that among the selected material and crack orientations, the mode-I SIF reaches the largest possible value when the material inclined angle psi(1) = 45 degrees and dig angle beta(1) = 45 degrees, and the crack inclined angle psi(2) = 0 degrees and dig angle beta(2) = 0 degrees. It is further observed that when the crack is oriented vertically or nearly vertically, the mode-I SIF becomes negative, indicating that the crack closes due to an overall compressive loading normal to the crack surface. Variation of the SIFs for modes II and III along the crack fronts also shows some interesting features for different combinations of the material and crack orientations. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:128 / 136
页数:9
相关论文
共 34 条