Local Charge Transport at the Interface of Semiconductor and Charge Transport Mediator

被引:7
作者
Zhang, Zemin [1 ]
Lindley, Sarah A. [1 ,2 ]
Chen, Tao [1 ]
Cheng, Xu [1 ]
Xie, Erqing [1 ]
Han, Weihua [1 ]
Toma, Francesca M. [3 ]
Cooper, Jason K. [3 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[2] Coreless Technol Inc, Santa Cruz, CA 95060 USA
[3] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
来源
ADVANCED OPTICAL MATERIALS | 2022年 / 10卷 / 21期
基金
美国国家科学基金会;
关键词
carrier losses; current mapping; effective barrier height; local charge transport; Schottky junction; ARTIFICIAL PHOTOSYNTHESIS; COPPER-OXIDE; PHOTOANODE; DYNAMICS; BEHAVIOR;
D O I
10.1002/adom.202201247
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Charge transport mediators are commonly used in photoelectronic devices to promote selective charge transport and mitigate carrier losses. However, related investigations are mainly carried out by the trial-and-error method, and a deeper understanding of its local charge transport behavior is still lacking. Herein, a comprehensive study is performed on a BiVO4/Ti3C2 photoanode to reveal its local charge transport properties by combing microprobe technologies and numerical computations. For the first time, a nano-Schottky junction is directly shown at the BiVO4/Ti3C2 interface and the band bending is quantified with promoted hole transport and prolonged photocarrier's lifetime. These mechanistic insights leverage a path to further optimize performance through interface engineering and achieve a photocurrent of 5.38 mA cm(-2) at 1.23 V versus reversible hydrogen electrode. This work provides deeper insight into the function of charge transport mediators in view of interface contact rather than material nature and demonstrates a strategy to improve photoelectrochemical performance through Fermi-level engineering.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Thermodynamic picture of ultrafast charge transport in graphene [J].
Mics, Zoltan ;
Tielrooij, Klaas-Jan ;
Parvez, Khaled ;
Jensen, Soren A. ;
Ivanov, Ivan ;
Feng, Xinliang ;
Muellen, Klaus ;
Bonn, Mischa ;
Turchinovich, Dmitry .
NATURE COMMUNICATIONS, 2015, 6
[22]   Efficient Charge Transport in DNA Diblock Oligomers [J].
Vura-Weis, Josh ;
Wasielewski, Michael R. ;
Thazhathveetil, Arun K. ;
Lewis, Frederick D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (28) :9722-9727
[23]   Charge transport in epitaxial barium titanate films [J].
Tyunina, M. ;
Savinov, M. .
PHYSICAL REVIEW B, 2020, 101 (09)
[24]   Time-dependent transport characteristics of graphene tuned by ferroelectric polarization and interface charge trapping [J].
Jie, Wenjing ;
Hao, Jianhua .
NANOSCALE, 2018, 10 (01) :328-335
[25]   Charge Transport in Full-Size HVDC Cable Joint with Modeling of XLPE/EPDM Interface [J].
Wang, Yani ;
Wang, Yalin ;
Yang, Xingwu ;
Ma, Aiqing ;
Sun, Yuanyuan ;
Yin, Yi .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2021, 28 (06) :2117-2125
[26]   Energy barriers at grain boundaries dominate charge carrier transport in an electron-conductive organic semiconductor [J].
Vladimirov, I. ;
Kuehn, M. ;
Gessner, T. ;
May, F. ;
Weitz, R. T. .
SCIENTIFIC REPORTS, 2018, 8
[27]   Nonlinear Charge Transport in InGaAs Nanowires at Terahertz Frequencies [J].
Rana, Rakesh ;
Balaghi, Leila ;
Fotev, Ivan ;
Schneider, Harald ;
Helm, Manfred ;
Dimakis, Emmanouil ;
Pashkin, Alexej .
NANO LETTERS, 2020, 20 (05) :3225-3231
[28]   Impurity charge state transport in tokamak and stellarator plasmas [J].
Shurygin, V. A. .
NUCLEAR FUSION, 2020, 60 (04)
[29]   Holographic charge transport in non commutative gauge theories [J].
Roychowdhury, Dibakar .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07)
[30]   Charge transport in chemically grown manganite based heterostructure [J].
Sagapariya, Khushal ;
Gadani, Keval ;
Rathod, K. N. ;
Joshi, Zalak ;
Boricha, Hetal ;
Dhruv, Davit ;
Keshvani, M. J. ;
Rajyaguru, Bhargav ;
Kansara, S. B. ;
Joshi, A. D. ;
Asokan, K. ;
Solanki, P. S. ;
Shah, N. A. .
MATERIALS CHEMISTRY AND PHYSICS, 2019, 224 (229-237) :229-237