Discrete time sliding mode control with application to induction motors

被引:55
作者
Castillo-Toledo, B. [3 ]
Di Gennaro, S. [1 ,2 ]
Loukianov, A. G. [3 ]
Rivera, J. [4 ]
机构
[1] Univ Aquila, Elect & Informat Engn Dept, I-67040 Laquila, Italy
[2] Univ Aquila, Ctr Excellence DEWS, I-67040 Laquila, Italy
[3] IPN, CINVESTAV, Unidad Guadalajara, Zapopan 45010, Jalisco, Mexico
[4] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Guadalajara 44430, Jalisco, Mexico
关键词
Discrete time control; Sliding mode control; Parameter uncertainty; Observers; Induction motors;
D O I
10.1016/j.automatica.2008.05.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work deals with a sliding mode control scheme for discrete time nonlinear systems. The control law synthesis problem is subdivided into a finite number of subproblems of lower complexity, which can be solved independently. The sliding mode controller is designed to force the system to track a desired reference and to eliminate unwanted disturbances, compensating at the same time matched and unmatched parameter variations. Then, an observer is designed to eliminate the need of the state in the controller implementation. This design technique is illustrated determining a dynamic discrete time controller for induction motors. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3036 / 3045
页数:10
相关论文
共 21 条
[1]  
Astrom K., 1997, COMPUTER CONTROLLED
[2]  
Blaschke F., 1772, Siemens Rev, V34, P217
[3]   Hybrid Control of Induction Motors via Sampled Closed Representations [J].
Castillo-Toledo, Bernardino ;
Di Gennaro, Stefano ;
Loukianov, Alexander G. ;
Rivera, Jorge .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (10) :3758-3771
[4]   On equivalence and feedback equivalence to finitely computable sampled models [J].
Di Giamberardino, P. ;
Monaco, S. ;
Normand-Cyrot, D. .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :5869-+
[5]  
DiGiamberardino P, 1996, IEEE INT CONF ROBOT, P3141, DOI 10.1109/ROBOT.1996.509190
[6]  
Dodds S. J., 1998, Journal of Electrical Engineering, V49, P186
[7]  
Fekih A, 2004, P AMER CONTR CONF, P1135
[8]  
Khalil H. K., 2002, NONLINEAR SYSTEMS, V3
[9]   DESIGN OF DISCRETE-TIME NONLINEAR CONTROL-SYSTEMS VIA SMOOTH FEEDBACK [J].
LIN, W ;
BYRNES, CI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (11) :2340-2346
[10]   Robust block decomposition sliding mode control design [J].
Loukianov, AG .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2002, 8 (4-5) :349-365