An Efficient Method for Collecting Spatio-Temporal Data in the WSN Using Mobile Sinks

被引:0
作者
Materukhin, Andrey [1 ]
Shakhov, Vladimir [2 ]
Sokolova, Olga [3 ]
机构
[1] Moscow State Univ Geodesy & Cartog, Moscow, Russia
[2] RAS, Novosibirsk State Tech Univ, Inst Computat Math & Math Geophys SB, Novosibirsk, Russia
[3] RAS, Inst Computat Math & Math Geophys SB, Novosibirsk, Russia
来源
2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON) | 2017年
关键词
geosensor; mobile sinks; spatio-temporal data; wireless sensor network; NETWORKS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The article is a concise presentation of the results of the research in the area of increasing the efficiency of energy consumption for the process of collecting spatio-temporal data with the wireless geosensor networks. Energy saving is a very significant consideration in the design of those systems, since geosensors used for environmental monitoring have limited possibilities for recharge of the batteries. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.
引用
收藏
页码:118 / 120
页数:3
相关论文
共 50 条
  • [41] Beast: Scalable Exploratory Analytics on Spatio-temporal Data
    Eldawy, Ahmed
    Hristidis, Vagelis
    Ghosh, Saheli
    Saeedan, Majid
    Sevim, Akil
    Siddique, A. B.
    Singla, Samriddhi
    Sivaram, Ganesh
    Vu, Tin
    Zhang, Yaming
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3796 - 3807
  • [42] Visual Exploration of Big Spatio-Temporal Movement Data
    Xu, Jie
    Wang, Wuquan
    Li, Jie
    Zhang, Kang
    [J]. PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 363 - 368
  • [43] Generative Adversarial Networks for Spatio-temporal Data: A Survey
    Gao, Nan
    Xue, Hao
    Shao, Wei
    Zhao, Sichen
    Qin, Kyle Kai
    Prabowo, Arian
    Rahaman, Mohammad Saiedur
    Salim, Flora D.
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)
  • [44] An Enhanced Imputation Approach for Spatio-Temporal Clinical Data
    Yin, Yilin
    Chou, Chun-An
    [J]. 2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 813 - 818
  • [45] Low Complexity Sensing for Big Spatio-Temporal Data
    Lee, Dongeun
    Choi, Jaesik
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 323 - 328
  • [46] Spatio-temporal data mining in ecological and veterinary epidemiology
    Moustakas, Aristides
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (04) : 829 - 834
  • [47] Preservation of implicit privacy in spatio-temporal data publication
    Wang L.
    Meng X.-F.
    Guo S.-N.
    [J]. Meng, Xiao-Feng (xfmeng@ruc.edu.cn), 1922, Chinese Academy of Sciences (27): : 1922 - 1933
  • [48] Deep Learning for Spatio-Temporal Data Mining: A Survey
    Wang, Senzhang
    Cao, Jiannong
    Yu, Philip S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3681 - 3700
  • [49] A time-based integration method of spatio-temporal data at spatial database level
    Fan, Y. T.
    Yang, J. Y.
    Zhu, D. H.
    Wei, K. L.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (11-12) : 1286 - 1292
  • [50] A Spatio-Temporal Data-Driven Automatic Control Method for Smart Home Services
    Chen, Jinrong
    Chen, Zheyi
    Zheng, Longhai
    Chen, Xing
    [J]. COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 948 - 955