An Efficient Method for Collecting Spatio-Temporal Data in the WSN Using Mobile Sinks

被引:0
|
作者
Materukhin, Andrey [1 ]
Shakhov, Vladimir [2 ]
Sokolova, Olga [3 ]
机构
[1] Moscow State Univ Geodesy & Cartog, Moscow, Russia
[2] RAS, Novosibirsk State Tech Univ, Inst Computat Math & Math Geophys SB, Novosibirsk, Russia
[3] RAS, Inst Computat Math & Math Geophys SB, Novosibirsk, Russia
来源
2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON) | 2017年
关键词
geosensor; mobile sinks; spatio-temporal data; wireless sensor network; NETWORKS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The article is a concise presentation of the results of the research in the area of increasing the efficiency of energy consumption for the process of collecting spatio-temporal data with the wireless geosensor networks. Energy saving is a very significant consideration in the design of those systems, since geosensors used for environmental monitoring have limited possibilities for recharge of the batteries. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.
引用
收藏
页码:118 / 120
页数:3
相关论文
共 50 条
  • [1] Efficient representation of spatio-temporal data using cylindrical shearlets
    Bubba, Tatiana A.
    Easley, Glenn
    Heikkila, Tommi
    Labate, Demetrio
    Ayllon, Jose P. Rodriguez
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 429
  • [2] A Data Cleaning Method on Massive Spatio-Temporal Data
    Ding, Weilong
    Cao, Yaqi
    ADVANCES IN SERVICES COMPUTING, 2016, 10065 : 173 - 182
  • [3] Energy Efficient Data Gathering using Spatio-temporal Compressive Sensing for WSNs
    K. Sekar
    K. Suganya Devi
    P. Srinivasan
    Wireless Personal Communications, 2021, 117 : 1279 - 1295
  • [4] Energy Efficient Data Gathering using Spatio-temporal Compressive Sensing for WSNs
    Sekar, K.
    Devi, K. Suganya
    Srinivasan, P.
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 117 (02) : 1279 - 1295
  • [5] Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review
    Baratchi, Mitra
    Meratnia, Nirvana
    Havinga, Paul J. M.
    Skidmore, Andrew K.
    Toxopeus, Bert A. G.
    SENSORS, 2013, 13 (05) : 6054 - 6088
  • [6] A Spatio-temporal Data Compression Algorithm
    Wang, Lei
    Guo, Yiming
    Chen, Chen
    Yan, Yaowei
    2012 FOURTH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY (MINES 2012), 2012, : 421 - 424
  • [7] Integration of Spatio-Temporal Data in a DBMS
    Abd Rahim, Yahaya
    Sahib, Shahrin
    Mastura, Siti
    2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: ICCEA 2010, PROCEEDINGS, VOL 2, 2010, : 384 - 388
  • [8] Spatio-temporal Data Revision: A Review
    Deng Xiaoguang
    Wu Huayi
    Li Deren
    GEOINFORMATICS 2008 AND JOINT CONFERENCE ON GIS AND BUILT ENVIRONMENT: ADVANCED SPATIAL DATA MODELS AND ANALYSES, PARTS 1 AND 2, 2009, 7146
  • [9] Spatio-Temporal Data Mining: A Survey of Problems and Methods
    Atluri, Gowtham
    Karpatne, Anuj
    Kumar, Vipin
    ACM COMPUTING SURVEYS, 2018, 51 (04)
  • [10] Spatio-temporal modeling of global ozone data using convolution
    Yang Li
    Zhengyuan Zhu
    Japanese Journal of Statistics and Data Science, 2020, 3 : 153 - 166