Asymptotic Solutions of Hamilton-Jacobi Equations with State Constraints

被引:32
作者
Mitake, Hiroyoshi [1 ]
机构
[1] Waseda Univ, Dept Pure & Appl Math, Shinjuku Ku, Tokyo 1698555, Japan
关键词
Hamilton-Jacobi equations; Large-time behavior; State constraints;
D O I
10.1007/s00245-008-9041-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Hamilton-Jacobi equations in a bounded domain with the state constraint boundary condition. We establish a general convergence result for viscosity solutions of the Cauchy problem for Hamilton-Jacobi equations with the state constraint boundary condition to asymptotic solutions as time goes to infinity.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 24 条
[1]  
[Anonymous], 2004, PROGR NONLINEAR DIFF
[2]   On the large time behavior of solutions of Hamilton-Jacobi equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :925-939
[3]   Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi Equations [J].
Barles, Guy ;
Roquejoffre, Jean-Michel .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (08) :1209-1225
[4]  
BARRON EN, 1990, COMMUN PART DIFF EQ, V15, P1713
[5]   A BOUNDARY-VALUE PROBLEM FOR HAMILTON-JACOBI EQUATIONS IN HILBERT-SPACES [J].
CANNARSA, P ;
GOZZI, F ;
SONER, HM .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 24 (02) :197-220
[6]   HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS [J].
CAPUZZODOLCETTA, I ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) :643-683
[7]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[8]   A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations [J].
Davini, Andrea ;
Siconolfi, Antonio .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) :478-502
[9]   PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians [J].
Fathi, A ;
Siconolfi, A .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (02) :185-228
[10]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270