Micromeasure distributions and applications for conformally generated fractals

被引:5
作者
Fraser, Jonathan M. [1 ]
Pollicott, Mark [2 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
JULIA SETS; HYPERBOLIC DIMENSION; INVARIANT-MEASURES; DISTANCE SETS; SCENERY FLOW; MAPS; PROJECTIONS; GEOMETRY;
D O I
10.1017/S0305004115000523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the scaling scenery of Gibbs measures for subshifts of finite type on self-conformal fractals and applications to Falconer's distance set problem and dimensions of projections. Our analysis includes hyperbolic Julia sets, limit sets of Schottky groups and graph-directed self-similar sets.
引用
收藏
页码:547 / 566
页数:20
相关论文
共 27 条
[1]  
[Anonymous], P LOND MATH SOC 2
[2]  
[Anonymous], 2003, Fractal Geometry: Mathematical Foundations and Applications, DOI DOI 10.1002/0470013850
[3]  
[Anonymous], 1975, LECT NOTES MATH
[4]  
Avila A, 2008, J AM MATH SOC, V21, P305
[5]   Hyperbolic Dimension of Julia Sets of Meromorphic Maps with Logarithmic Tracts [J].
Baranski, Krzysztof ;
Karpinska, Boguslawa ;
Zdunik, Anna .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (04) :615-624
[6]   The scenery flow for hyperbolic Julia sets [J].
Bedford, T ;
Fisher, AM ;
Urbanski, M .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :467-492
[7]   Ratio geometry, rigidity and the scenery process for hyperbolic Cantor sets [J].
Bedford, T ;
Fisher, AM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :531-564
[8]   On the Erdos-Volkmann and Katz-Tao ring conjectures [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) :334-365
[9]  
Erdogan MB, 2005, INT MATH RES NOTICES, V2005, P1411
[10]  
FALCONER K. J., 2015, FRACTAL GEOMETRY STO