Symmetry preserving numerical schemes for partial differential equations and their numerical tests

被引:29
作者
Rebelo, Raphael [1 ]
Valiquette, Francis [2 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
equivariant moving frames; finite difference equations; invariants; symmetry groups; 58J70; 68N06; INVARIANTIZATION; DISCRETIZATION; FOUNDATIONS; INTEGRATION;
D O I
10.1080/10236198.2012.685470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The method of equivariant moving frames is used to construct symmetry preserving finite difference schemes of partial differential equations invariant under finite-dimensional symmetry groups. Invariant numerical schemes for a heat equation with logarithmic source and the spherical Burgers' equation are obtained. Numerical tests show how invariant schemes can be more accurate than standard discretizations.
引用
收藏
页码:738 / 757
页数:20
相关论文
共 26 条
  • [1] Ames W. F., 1993, CRC HDB LIE GROUP AN, V1
  • [2] [Anonymous], APPL LIE GROUPS DIFF
  • [3] Difference schemes with point symmetries and their numerical tests
    Bourlioux, A.
    Cyr-Gagnon, C.
    Winternitz, P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22): : 6877 - 6896
  • [4] Symmetry Preserving Discretization of SL(2,R) Invariant Equations
    Bourlioux, Anne
    Rebelo, Raphael
    Winternitz, Pavel
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 362 - 372
  • [5] Symmetry-adapted moving mesh schemes for the nonlinear Schrodinger equation
    Budd, C
    Dorodnitsyn, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10387 - 10400
  • [6] ON THE INFINITE-DIMENSIONAL SYMMETRY GROUP OF THE DAVEY-STEWARTSON EQUATIONS
    CHAMPAGNE, B
    WINTERNITZ, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) : 1 - 8
  • [7] SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS
    CHANNELL, PJ
    SCOVEL, C
    [J]. NONLINEARITY, 1990, 3 (02) : 231 - 259
  • [8] ON THE ACCURACY OF INVARIANT NUMERICAL SCHEMES
    Chhay, Marx
    Hamdouni, Aziz
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (02) : 761 - 783
  • [9] SUBALGEBRAS OF LOOP ALGEBRAS AND SYMMETRIES OF THE KADOMTSEV-PETVIASHVILI EQUATION
    DAVID, D
    KAMRAN, N
    LEVI, D
    WINTERNITZ, P
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (20) : 2111 - 2113
  • [10] Lie group classification of second-order ordinary difference equations
    Dorodnitsyn, V
    Kozlov, R
    Winternitz, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (01) : 480 - 504