Discovering a trans-omics biomarker signature that predisposes high risk diabetic patients to diabetic kidney disease

被引:17
作者
Wu, I-Wen [1 ,2 ,3 ]
Tsai, Tsung-Hsien [4 ]
Lo, Chi-Jen [5 ]
Chou, Yi-Ju [6 ]
Yeh, Chi-Hsiao [2 ,3 ,7 ]
Chan, Yun-Hsuan [4 ]
Chen, Jun-Hong [4 ]
Hsu, Paul Wei-Che [6 ]
Pan, Heng-Chih [1 ,2 ]
Hsu, Heng-Jung [1 ,2 ]
Chen, Chun-Yu [1 ,2 ]
Lee, Chin-Chan [1 ,2 ]
Shyu, Yu-Chiau [2 ,8 ]
Lin, Chih-Lang [2 ,9 ]
Cheng, Mei-Ling [5 ,10 ,11 ]
Lai, Chi-Chun [2 ,3 ,12 ]
Sytwu, Huey-Kang [13 ,14 ]
Tsai, Ting-Fen [6 ,15 ,16 ,17 ]
机构
[1] Chang Gung Mem Hosp, Dept Nephrol, Keelung 204, Taiwan
[2] Chang Gung Mem Hosp, Community Med Res Ctr, Keelung 204, Taiwan
[3] Chang Gung Univ, Coll Med, Taoyuan 333, Taiwan
[4] Acer Inc, Adv Tech BU, New Taipei 221, Taiwan
[5] Chang Gung Univ, Hlth Aging Res Ctr, Metabolom Core Lab, Taoyuan 333, Taiwan
[6] Natl Hlth Res Inst, Inst Mol & Genom Med, Miaoli 350, Taiwan
[7] Chang Gung Mem Hosp, Dept Thorac & Cardiovasc Surg, Taoyuan 333, Taiwan
[8] Chang Gung Univ Sci & Technol, Dept Nursing, Taoyuan 333, Taiwan
[9] Chang Gung Mem Hosp, Dept Gastroenterol & Hepatol, Keelung 204, Taiwan
[10] Chang Gung Mem Hosp, Clin Metabol Core Lab, Taoyuan 333, Taiwan
[11] Chang Gung Univ, Coll Med, Dept Biomed Sci, Taoyuan 333, Taiwan
[12] Chang Gung Mem Hosp, Dept Ophthalmol, Keelung 204, Taiwan
[13] Natl Hlth Res Inst, Natl Inst Infect Dis & Vaccinol, Miaoli 350, Taiwan
[14] Natl Def Med Ctr, Dept & Grad Inst Microbiol & Immunol, Taipei 114, Taiwan
[15] Natl Yang Ming Chiao Tung Univ, Dept Life Sci, Taipei 112, Taiwan
[16] Natl Yang Ming Chiao Tung Univ, Inst Genome Sci, Taipei 112, Taiwan
[17] Natl Yang Ming Chiao Tung Univ, Ctr Hlth Longev & Aging Sci, Taipei 112, Taiwan
关键词
METABOLOMICS; METABOLITES; INJURY; COHORT;
D O I
10.1038/s41746-022-00713-7
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Diabetic kidney disease is the leading cause of end-stage kidney disease worldwide; however, the integration of high-dimensional trans-omics data to predict this diabetic complication is rare. We develop artificial intelligence (AI)-assisted models using machine learning algorithms to identify a biomarker signature that predisposes high risk patients with diabetes mellitus (DM) to diabetic kidney disease based on clinical information, untargeted metabolomics, targeted lipidomics and genome-wide single nucleotide polymorphism (SNP) datasets. This involves 618 individuals who are split into training and testing cohorts of 557 and 61 subjects, respectively. Three models are developed. In model 1, the top 20 features selected by AI give an accuracy rate of 0.83 and an area under curve (AUC) of 0.89 when differentiating DM and non-DM individuals. In model 2, among DM patients, a biomarker signature of 10 AI-selected features gives an accuracy rate of 0.70 and an AUC of 0.76 when identifying subjects at high risk of renal impairment. In model 3, among non-DM patients, a biomarker signature of 25 AI-selected features gives an accuracy rate of 0.82 and an AUC of 0.76 when pinpointing subjects at high risk of chronic kidney disease. In addition, the performance of the three models is rigorously verified using an independent validation cohort. Intriguingly, analysis of the protein-protein interaction network of the genes containing the identified SNPs (RPTOR, CLPTM1L, ALDH1L1, LY6D, PCDH9, B3GNTL1, CDS1, ADCYAP and FAM53A) reveals that, at the molecular level, there seems to be interconnected factors that have an effect on the progression of renal impairment among DM patients. In conclusion, our findings reveal the potential of employing machine learning algorithms to augment traditional methods and our findings suggest what molecular mechanisms may underlie the complex interaction between DM and chronic kidney disease. Moreover, the development of our AI-assisted models will improve precision when diagnosing renal impairment in predisposed patients, both DM and non-DM. Finally, a large prospective cohort study is needed to validate the clinical utility and mechanistic implications of these biomarker signatures.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence [J].
Alicic, Radica Z. ;
Cox, Emily J. ;
Neumiller, Joshua J. ;
Tuttle, Katherine R. .
NATURE REVIEWS NEPHROLOGY, 2021, 17 (04) :227-244
[2]   Clinical Application of Kidney Biomarkers in Cirrhosis [J].
Allegretti, Andrew S. ;
Sola, Elsa ;
Gines, Pere .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2020, 76 (05) :710-719
[3]   CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease [J].
Anders, Hans-Joachim ;
Huber, Tobias B. ;
Isermann, Berend ;
Schiffer, Mario .
NATURE REVIEWS NEPHROLOGY, 2018, 14 (06) :361-377
[4]   Tryptophan metabolites suppress the Wnt pathway and promote adverse limb events in chronic kidney disease [J].
Arinze, Nkiruka, V ;
Yin, Wenqing ;
Lotfollahzadeh, Saran ;
Napoleon, Marc Arthur ;
Richards, Sean ;
Walker, Joshua A. ;
Belghasem, Mostafa ;
Ravid, Jonathan D. ;
Kamel, Mohamed Hassan ;
Whelan, Stephen A. ;
Lee, Norman ;
Siracuse, Jeffrey J. ;
Anderson, Stephan ;
Farber, Alik ;
Sherr, David ;
Francis, Jean ;
Hamburg, Naomi M. ;
Rahimi, Nader ;
Chitalia, Vipul C. .
JOURNAL OF CLINICAL INVESTIGATION, 2022, 132 (01)
[5]   Early Metabolic Features of Genetic Liability to Type 2 Diabetes: Cohort Study With Repeated Metabolomics Across Early Life [J].
Bell, Joshua A. ;
Bull, Caroline J. ;
Gunter, Marc J. ;
Carslake, David ;
Mahajan, Anubha ;
Davey Smith, George ;
Timpson, Nicholas J. ;
Vincent, Emma E. .
DIABETES CARE, 2020, 43 (07) :1537-1545
[6]   Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J].
Bikbov, Boris ;
Purcell, Carrie ;
Levey, Andrew S. ;
Smith, Mari ;
Abdoli, Amir ;
Abebe, Molla ;
Adebayo, Oladimeji M. ;
Afarideh, Mohsen ;
Agarwal, Sanjay Kumar ;
Agudelo-Botero, Marcela ;
Ahmadian, Elham ;
Al-Aly, Ziyad ;
Alipour, Vahid ;
Almasi-Hashiani, Amir ;
Al-Raddadi, Rajaa M. ;
Alvis-Guzman, Nelson ;
Amini, Saeed ;
Andrei, Tudorel ;
Andrei, Catalina Liliana ;
Andualem, Zewudu ;
Anjomshoa, Mina ;
Arabloo, Jalal ;
Ashagre, Alebachew Fasil ;
Asmelash, Daniel ;
Ataro, Zerihun ;
Atout, Maha Moh'd Wahbi ;
Ayanore, Martin Amogre ;
Badawi, Alaa ;
Bakhtiari, Ahad ;
Ballew, Shoshana H. ;
Balouchi, Abbas ;
Banach, Maciej ;
Barquera, Simon ;
Basu, Sanjay ;
Bayih, Mulat Tirfie ;
Bedi, Neeraj ;
Bello, Aminu K. ;
Bensenor, Isabela M. ;
Bijani, Ali ;
Boloor, Archith ;
Borzi, Antonio M. ;
Camera, Luis Alberto ;
Carrero, Juan J. ;
Carvalho, Felix ;
Castro, Franz ;
Catala-Lopez, Ferran ;
Chang, Alex R. ;
Chin, Ken Lee ;
Chung, Sheng-Chia ;
Cirillo, Massimo .
LANCET, 2020, 395 (10225) :709-733
[7]   Metabolic Disturbances Identified in Plasma Are Associated With Outcomes in Patients With Heart Failure Diagnostic and Prognostic Value of Metabolomics [J].
Cheng, Mei-Ling ;
Wang, Chao-Hung ;
Shiao, Ming-Shi ;
Liu, Min-Hui ;
Huang, Yu-Yen ;
Huang, Cheng-Yu ;
Mao, Chun-Tai ;
Lin, Jui-Fen ;
Ho, Hung-Yao ;
Yang, Ning-I .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (15) :1509-1520
[8]   Genetics of diabetes mellitus and diabetes complications [J].
Cole, Joanne B. ;
Florez, Jose C. .
NATURE REVIEWS NEPHROLOGY, 2020, 16 (07) :377-390
[9]  
Debnath S, 2017, INT J TRYPTOPHAN RES, V10, DOI 10.1177/1178646917694600
[10]   Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors [J].
DeFronzo, Ralph A. ;
Reeves, W. Brian ;
Awad, Alaa S. .
NATURE REVIEWS NEPHROLOGY, 2021, 17 (05) :319-334