Transfer Learning for Drug Discovery

被引:223
作者
Cai, Chenjing [1 ]
Wang, Shiwei [2 ]
Xu, Youjun [3 ,4 ]
Zhang, Weilin [5 ]
Tang, Ke [6 ]
Ouyang, Qi [1 ,7 ]
Lai, Luhua [1 ,3 ,4 ]
Pei, Jianfeng [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Quantitat Biol, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, PTN Grad Program, Beijing 100871, Peoples R China
[3] Peking Univ, BNLMS, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[4] Peking Univ, Peking Tsinghua Ctr Life Sci, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[5] Beijing Intelligent Pharma Technol Co Ltd, Beijing 100083, Peoples R China
[6] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
[7] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
DEEP NEURAL-NETWORKS; SCORING FUNCTIONS; PDBBIND DATABASE;
D O I
10.1021/acs.jmedchem.9b02147
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The data sets available to train models for in silico drug discovery efforts are often small. Indeed, the sparse availability of labeled data is a major barrier to artificial-intelligence-assisted drug discovery. One solution to this problem is to develop algorithms that can cope with relatively heterogeneous and scarce data. Transfer learning is a type of machine learning that can leverage existing, generalizable knowledge from other related tasks to enable learning of a separate task with a small set of data. Deep transfer learning is the most commonly used type of transfer learning in the field of drug discovery. This Perspective provides an overview of transfer learning and related applications to drug discovery to date. Furthermore, it provides outlooks on the future development of transfer learning for drug discovery.
引用
收藏
页码:8683 / 8694
页数:12
相关论文
共 96 条
[81]   Fragment Database FDB-17 [J].
Visini, Ricardo ;
Awale, Mahendra ;
Reymond, Jean-Louis .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (04) :700-709
[82]   Improving Scoring-Docking-Screening Powers of Protein-Ligand Scoring Functions using Random Forest [J].
Wang, Cheng ;
Zhang, Yingkai .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (03) :169-177
[83]  
Wang Li, 2016, 160608793 ARXIV
[84]   The PDBbind database: Methodologies and updates [J].
Wang, RX ;
Fang, XL ;
Lu, YP ;
Yang, CY ;
Wang, SM .
JOURNAL OF MEDICINAL CHEMISTRY, 2005, 48 (12) :4111-4119
[85]   The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures [J].
Wang, RX ;
Fang, XL ;
Lu, YP ;
Wang, SM .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (12) :2977-2980
[86]   MoleculeNet: a benchmark for molecular machine learning [J].
Wu, Zhenqin ;
Ramsundar, Bharath ;
Feinberg, Evan N. ;
Gomes, Joseph ;
Geniesse, Caleb ;
Pappu, Aneesh S. ;
Leswing, Karl ;
Pande, Vijay .
CHEMICAL SCIENCE, 2018, 9 (02) :513-530
[87]  
Xiong Z., 2019, J MED CHEM
[88]   Deep learning for molecular generation [J].
Xu, Youjun ;
Lin, Kangjie ;
Wang, Shiwei ;
Wang, Lei ;
Cai, Chenjing ;
Song, Chen ;
Lai, Luhua ;
Pei, Jianfeng .
FUTURE MEDICINAL CHEMISTRY, 2019, 11 (06) :567-597
[89]   Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships [J].
Xu, Yuting ;
Ma, Junshui ;
Liaw, Andy ;
Sheridan, Robert P. ;
Svetnik, Vladimir .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (10) :2490-2504
[90]   Analyzing Learned Molecular Representations for Property Prediction [J].
Yang, Kevin ;
Swanson, Kyle ;
Jin, Wengong ;
Coley, Connor ;
Eiden, Philipp ;
Gao, Hua ;
Guzman-Perez, Angel ;
Hopper, Timothy ;
Kelley, Brian ;
Mathea, Miriam ;
Palmer, Andrew ;
Settels, Volker ;
Jaakkola, Tommi ;
Jensen, Klavs ;
Barzilay, Regina .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (08) :3370-3388