Transfer Learning for Drug Discovery

被引:200
作者
Cai, Chenjing [1 ]
Wang, Shiwei [2 ]
Xu, Youjun [3 ,4 ]
Zhang, Weilin [5 ]
Tang, Ke [6 ]
Ouyang, Qi [1 ,7 ]
Lai, Luhua [1 ,3 ,4 ]
Pei, Jianfeng [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Quantitat Biol, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, PTN Grad Program, Beijing 100871, Peoples R China
[3] Peking Univ, BNLMS, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[4] Peking Univ, Peking Tsinghua Ctr Life Sci, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[5] Beijing Intelligent Pharma Technol Co Ltd, Beijing 100083, Peoples R China
[6] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
[7] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
DEEP NEURAL-NETWORKS; SCORING FUNCTIONS; PDBBIND DATABASE;
D O I
10.1021/acs.jmedchem.9b02147
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The data sets available to train models for in silico drug discovery efforts are often small. Indeed, the sparse availability of labeled data is a major barrier to artificial-intelligence-assisted drug discovery. One solution to this problem is to develop algorithms that can cope with relatively heterogeneous and scarce data. Transfer learning is a type of machine learning that can leverage existing, generalizable knowledge from other related tasks to enable learning of a separate task with a small set of data. Deep transfer learning is the most commonly used type of transfer learning in the field of drug discovery. This Perspective provides an overview of transfer learning and related applications to drug discovery to date. Furthermore, it provides outlooks on the future development of transfer learning for drug discovery.
引用
收藏
页码:8683 / 8694
页数:12
相关论文
共 96 条
  • [1] Deep Transferable Compound Representation across Domains and Tasks for Low Data Drug Discovery
    Abbasi, Karim
    Poso, Antti
    Ghasemi, Jahanbakhsh
    Amanlou, Massoud
    Masoudi-Nejad, Ali
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (11) : 4528 - 4539
  • [2] Low Data Drug Discovery with One-Shot Learning
    Altae-Tran, Han
    Ramsundar, Bharath
    Pappu, Aneesh S.
    Pande, Vijay
    [J]. ACS CENTRAL SCIENCE, 2017, 3 (04) : 283 - 293
  • [3] [Anonymous], 2019, J MED CHEM
  • [4] [Anonymous], 2019, J MED CHEM
  • [5] Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment
    Ashtawy, Hossam M.
    Mahapatra, Nihar R.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (01) : 119 - 133
  • [6] A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction
    Ashtawy, Hossam M.
    Mahapatra, Nihar R.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (02) : 335 - 347
  • [7] Drug Analogs from Fragment-Based Long Short-Term Memory Generative Neural Networks
    Awale, Mahendra
    Sirockin, Finton
    Stiefl, Nikolaus
    Reymond, Jean-Louis
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (04) : 1347 - 1356
  • [8] Integrating structured biological data by Kernel Maximum Mean Discrepancy
    Borgwardt, Karsten M.
    Gretton, Arthur
    Rasch, Malte J.
    Kriegel, Hans-Peter
    Schoelkopf, Bernhard
    Smola, Alex J.
    [J]. BIOINFORMATICS, 2006, 22 (14) : E49 - E57
  • [9] Caruana R., 1995, WORKSH HELD NIPS 95
  • [10] The rise of deep learning in drug discovery
    Chen, Hongming
    Engkvist, Ola
    Wang, Yinhai
    Olivecrona, Marcus
    Blaschke, Thomas
    [J]. DRUG DISCOVERY TODAY, 2018, 23 (06) : 1241 - 1250