Stabilization of linear impulsive systems through a nearly-periodic reset

被引:67
作者
Hetel, Laurentiu [1 ]
Daafouz, Jamal [2 ]
Tarbouriech, Sophie [3 ,4 ]
Prieur, Christophe [5 ]
机构
[1] Ecole Cent Lille, LAGIS, CNRS, F-59651 Villeneuve Dascq, France
[2] Lorraine Univ, IUF, CNRS, CRAN, F-54516 Vandoeuvre Les Nancy, France
[3] CNRS, LAAS, F-31400 Toulouse, France
[4] Univ Toulouse, LAAS, F-31400 Toulouse, France
[5] Gipsa Lab, Dept Automat Control, F-38402 Grenoble, France
关键词
Impulsive systems; Reset laws; Stability analysis; Stabilization; Uncertainty; DYNAMICAL-SYSTEMS; STABILITY;
D O I
10.1016/j.nahs.2012.06.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the class of impulsive systems constituted by a continuous-time linear dynamics for all time, except at a sequence of instants. When such a discrete time occurs, the state undergoes a jump, or more precisely follows a discrete linear dynamics. The sequence of time instants, when a discrete dynamics occurs, is nearly-periodic only, i.e. it is distant from a periodic sequence to an uncertain error. This paper succeeds to state tractable conditions to analyze the stability, and to design reset matrices such that the hybrid system is globally exponentially stable to the origin. The approach is based on a polytopic embedding of the uncertain dynamics. Some examples illustrate the main results. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4 / 15
页数:12
相关论文
共 28 条
[1]   Performance analysis of reset control systems [J].
Aangenent, W. H. T. M. ;
Witvoet, G. ;
Heemels, W. P. M. H. ;
van de Molengraft, M. J. G. ;
Steinbuch, M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2010, 20 (11) :1213-1233
[2]   Finite-time stabilization of impulsive dynamical linear systems [J].
Amato, F. ;
Ambrosino, R. ;
Cosentino, C. ;
De Tommasi, G. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2011, 5 (01) :89-101
[3]   Finite-time stability of linear time-varying systems with jumps [J].
Amato, Francesco ;
Ambrosino, Roberto ;
Ariola, Marco ;
Cosentino, Carlo .
AUTOMATICA, 2009, 45 (05) :1354-1358
[4]   Reset Times-Dependent Stability of Reset Control Systems [J].
Banos, Alfonso ;
Carrasco, Joaquin ;
Barreiro, Antonio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (01) :217-223
[5]   Plant with integrator: An example of reset control overcoming limitations of linear feedback [J].
Beker, O ;
Hollot, CV ;
Chait, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (11) :1797-1799
[6]  
Clegg J.C., 1958, Trans. Am. Inst. Electr. Eng. II, V77, P41
[7]   Controller synthesis for networked control systems [J].
Cloosterman, M. B. G. ;
Hetel, L. ;
van de Wouw, N. ;
Heemels, W. P. M. H. ;
Daafouz, J. ;
Nijmeijer, H. .
AUTOMATICA, 2010, 46 (10) :1584-1594
[8]   Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties [J].
Daafouz, J ;
Bernussou, J .
SYSTEMS & CONTROL LETTERS, 2001, 43 (05) :355-359
[9]   A new discrete-time robust stability conditions [J].
de Oliveira, MC ;
Bernussou, J ;
Geromel, JC .
SYSTEMS & CONTROL LETTERS, 1999, 37 (04) :261-265
[10]  
Gielen R., 2010, P 13 INT C HYBR SYST