Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos

被引:30
|
作者
Sterenborg, M. Glenn [1 ]
Crowley, John W. [2 ]
机构
[1] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
[2] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
关键词
Planetary magnetic fields; Planetesimals; Thermal evolution; Dynamos; Early solar system; Meteorite parent body; CORE FORMATION; TERRESTRIAL PLANETS; MELT EXTRACTION; 2-PHASE MODEL; DIFFERENTIATION; MANTLE; CONVECTION; COMPACTION; AL-26; MAGMA;
D O I
10.1016/j.pepi.2012.10.006
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a study investigating the possible presence and longevity of a stable dynamo powered by thermal convection in early solar system planetesimals. We model the thermal evolution of planetesimals that start from an initially cool state. After melting, core formation, and onset of mantle convection have occurred, we use a numerical model that relies on thermal boundary layer theory for stagnant lid convection to determine a cooling rate and thermal boundary layer thickness that are dynamically self consistent. We assess the presence, strength and duration of a dynamo for a range of planetesimal sizes and other parameters. The duration of a dynamo depends foremost on the planetesimal's radius. Given a particular magnetic field strength and dynamo duration we are able to place a constraint on the minimum radius of planetesimals, for example: bodies smaller than similar to 500 km will be unable to generate a dynamo with magnetic field strength of the order of 20 mu T for a duration of 10 Myr or longer. We find that dynamo duration also depends, to a lesser extent, on the effective temperature dependence of the mantle viscosity and on the rotation rate of the body. These dependencies are made explicit by our derivation of an analytical approximation for the cooling rate of a planetesimal and its dynamo duration. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 73
页数:21
相关论文
共 50 条
  • [1] Thermal evolution of icy planetesimals in the solar nebula
    Wakita, Shigeru
    Sekiya, Minoru
    EARTH PLANETS AND SPACE, 2011, 63 (12): : 1193 - 1206
  • [2] Thermal evolution of icy planetesimals in the solar nebula
    Shigeru Wakita
    Minoru Sekiya
    Earth, Planets and Space, 2011, 63 : 1193 - 1206
  • [3] Low velocity collisions of porous planetesimals in the early solar system
    de Niem, D.
    Kuehrt, E.
    Hviid, S.
    Davidsson, B.
    ICARUS, 2018, 301 : 196 - 218
  • [4] Thermal evolution and sintering of chondritic planetesimals
    Henke, S.
    Gail, H. -P.
    Trieloff, M.
    Schwarz, W. H.
    Kleine, T.
    ASTRONOMY & ASTROPHYSICS, 2012, 537
  • [5] Thermal evolution of planetesimals during accretion
    Ricard, Y.
    Bercovici, D.
    Albarede, F.
    ICARUS, 2017, 285 : 103 - 117
  • [6] Thermal evolution and sintering of chondritic planetesimals
    Henke, S., 1600, EDP Sciences (537):
  • [7] FORMATION OF IRON, STONE, AND MIXED PLANETESIMALS IN EARLY SOLAR-SYSTEM
    WESSON, PS
    LERMANN, A
    ICARUS, 1978, 33 (01) : 74 - 88
  • [8] Mg diffusion in anorthite: implications for the formation of early solar system planetesimals
    LaTourrette, T
    Wasserburg, GJ
    EARTH AND PLANETARY SCIENCE LETTERS, 1998, 158 (3-4) : 91 - 108
  • [9] Dynamos in the Inner Solar System
    Tikoo, Sonia M.
    Evans, Alexander J.
    ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2022, 50 : 99 - 122
  • [10] Contemporary formation of early Solar System planetesimals at two distinct radial locations
    A. Morbidelli
    K. Baillié
    K. Batygin
    S. Charnoz
    T. Guillot
    D. C. Rubie
    T. Kleine
    Nature Astronomy, 2022, 6 : 72 - 79