High-Resolution Inverse Synthetic Aperture Radar Imaging and Scaling With Sparse Aperture

被引:77
作者
Xu, Gang [1 ]
Xing, Meng-Dao [1 ]
Xia, Xiang-Gen [1 ,2 ]
Chen, Qian-Qian [1 ]
Zhang, Lei [1 ]
Bao, Zheng [1 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Peoples R China
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
基金
中国国家自然科学基金;
关键词
Inverse synthetic aperture radar (ISAR); migration through resolution cells (MTRC); phase error correction; sparsity; GLOBAL RANGE ALIGNMENT; MANEUVERING TARGETS; SIGNAL RECONSTRUCTION; MOTION COMPENSATION; SPECTRAL-ANALYSIS; ISAR; AUTOFOCUS; ALGORITHM; MIGRATION; IMAGES;
D O I
10.1109/JSTARS.2015.2439266
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In high-resolution radar imaging, the rotational motion of targets generally produces migration through resolution cells (MTRC) in inverse synthetic aperture radar (ISAR) images. Usually, it is a challenge to realize accurate MTRC correction on sparse aperture (SA) data, which tends to degrade the performance of translational motion compensation and SA-imaging. In this paper, we present a novel algorithm for high-resolution ISAR imaging and scaling from SA data, which effectively incorporates the translational motion phase error and MTRC corrections. In this algorithm, the ISAR image formation is converted into a sparsity-driven optimization via maximum a posterior (MAP) estimation, where the statistics of an ISAR image is modeled as complex Laplace distribution to provide a sparse prior. The translational motion phase error compensation and cross-range-MTRC correction are modeled as joint range-invariant and range-variant phase error corrections in the range-compressed phase history domain. Our proposed imaging approach is performed by a two-step process: 1) the range-invariant and range-variant phase error estimations using a metric of minimum entropy are employed and solved by using a coordinate descent method to realize a coarse phase error correction. Meanwhile, the rotational motion can be obtained from the estimation of range-variant phase errors, which is used for ISAR scaling in the cross-range dimension; 2) under a two-dimensional (2-D) Fourier-based dictionary by involving the slant-range MTRC, joint MTRC-corrected ISAR imaging and accurate phase adjustment are realized by solving the sparsity-driven optimization with SA data, where the residual phase errors are treated as model error and removed to achieve a fine correction. Finally, some experiments based on simulated and measured data are performed to confirm the effectiveness of the proposed algorithm.
引用
收藏
页码:4010 / 4027
页数:18
相关论文
共 47 条
[1]   High-Resolution Radar Imaging of Air Targets From Sparse Azimuth Data [J].
Bai, Xueru ;
Zhou, Feng ;
Xing, Mengdao ;
Bao, Zheng .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (02) :1643-1655
[2]   Autofocusing of inverse synthetic aperture radar images using contrast optimization [J].
Berizzi, F ;
Corsini, G .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1996, 32 (03) :1185-1191
[3]   High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: Modeling and performance analysis [J].
Berizzi, F ;
Dalle Mese, E ;
Diani, M ;
Martorella, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (12) :1880-1890
[4]   LINEAR FILTERING APPROACH TO COMPUTATION OF DISCRETE FOURIER TRANSFORM [J].
BLUESTEIN, LI .
IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1970, AU18 (04) :451-+
[5]   New Bounds for Restricted Isometry Constants [J].
Cai, T. Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) :4388-4394
[6]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[7]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[8]   Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J].
Çetin, M ;
Karl, WC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (04) :623-631
[9]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[10]   Time-varying spectral analysis for radar imaging of manoeuvring targets [J].
Chen, VC ;
Miceli, WJ .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1998, 145 (05) :262-268