Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge-Kutta convolution quadrature

被引:20
作者
Ballani, J. [1 ]
Banjai, L. [1 ]
Sauter, S. [2 ]
Veit, A. [2 ]
机构
[1] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
BOUNDARY INTEGRAL-EQUATIONS; ELEMENT-METHOD; WAVE-EQUATION; TRACES; DISCRETIZATION; SCATTERING; MULTISTEP;
D O I
10.1007/s00211-012-0503-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using Runge-Kutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the sharpness of the theoretical estimates.
引用
收藏
页码:643 / 670
页数:28
相关论文
共 49 条
[1]  
Abboud T., 2001, Applied Computational Electromagnetics Symp, P146
[2]  
[Anonymous], 2001, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems
[3]  
Bachelot A, 2001, NUMER MATH, V89, P257, DOI 10.1007/PL00005468
[4]  
Bamberger A., 1986, Math. Methods Appl. Sci, V8, P405, DOI [10.1002/mma.1670080127, DOI 10.1002/MMA.1670080127]
[5]   RAPID SOLUTION OF THE WAVE EQUATION IN UNBOUNDED DOMAINS [J].
Banjai, L. ;
Sauter, S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :227-249
[6]  
Banjai L., 2012, 052012 U ZUR
[7]  
Banjai L, 2012, LECT NOTES APPL COMP, V63, P145
[8]   Runge-Kutta convolution quadrature for operators arising in wave propagation [J].
Banjai, Lehel ;
Lubich, Christian ;
Melenk, Jens Markus .
NUMERISCHE MATHEMATIK, 2011, 119 (01) :1-20
[9]   An error analysis of Runge-Kutta convolution quadrature [J].
Banjai, Lehel ;
Lubich, Christian .
BIT NUMERICAL MATHEMATICS, 2011, 51 (03) :483-496
[10]   MULTISTEP AND MULTISTAGE CONVOLUTION QUADRATURE FOR THE WAVE EQUATION: ALGORITHMS AND EXPERIMENTS [J].
Banjai, Lehel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2964-2994