A New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration Method

被引:117
作者
Cho, H. T. [2 ]
Cornell, A. S. [1 ]
Doukas, Jason [3 ]
Huang, T. -R. [2 ]
Naylor, Wade [4 ,5 ]
机构
[1] Univ Witwatersrand, Sch Phys, Natl Inst Theoret Phys, ZA-2050 Johannesburg, South Africa
[2] Tamkang Univ, Dept Phys, Tamsui 25137, New Taipei City, Taiwan
[3] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[4] Osaka Univ, Int Coll, Toyonaka, Osaka 5600043, Japan
[5] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan
基金
日本学术振兴会;
关键词
WKB APPROACH; GRAVITATIONAL PERTURBATIONS; NORMAL FREQUENCIES; HIGHER DIMENSIONS; SCALAR; DIRAC; SCATTERING; STABILITY; EQUATIONS; RADIATION;
D O I
10.1155/2012/281705
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss how to obtain black hole quasinormal modes (QNMs) using the asymptotic iteration method (AIM), initially developed to solve second-order ordinary differential equations. We introduce the standard version of this method and present an improvement more suitable for numerical implementation. We demonstrate that the AIM can be used to find radial QNMs for Schwarzschild, Reissner-Nordstrom (RN), and Kerr black holes in a unified way. We discuss some advantages of the AIM over the continued fractions method (CFM). This paper presents for the first time the spin 0, 1/2 and 2QNMs of a Kerr black hole and the gravitational and electromagnetic QNMs of the RN black hole calculated via the AIM and confirms results previously obtained using the CFM. We also present some new results comparing the AIM to the WKB method. Finally we emphasize that the AIM is well suited to higher-dimensional generalizations and we give an example of doubly rotating black holes.
引用
收藏
页数:42
相关论文
共 69 条
[21]   Asymptotic iteration method for spheroidal harmonics of higher-dimensional Kerr-(A)dS black holes [J].
Cho, H. T. ;
Cornell, A. S. ;
Doukas, Jason ;
Naylor, Wade .
PHYSICAL REVIEW D, 2009, 80 (06)
[22]   Quasi-exactly solvable quasinormal modes [J].
Cho, Hing-Tong ;
Ho, Choon-Lin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (06) :1325-1331
[23]   Dirac quasinormal modes in Schwarzschild black hole spacetimes [J].
Cho, HT .
PHYSICAL REVIEW D, 2003, 68 (02)
[24]   Perturbation theory in a framework of iteration methods [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
PHYSICS LETTERS A, 2005, 340 (5-6) :388-396
[25]   Asymptotic iteration method for eigenvalue problems [J].
Ciftci, H ;
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (47) :11807-11816
[26]   High-frequency quasi-normal modes for black holes with generic singularities [J].
Das, S ;
Shankaranarayanan, S .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (03) :L7-L21
[27]   RESONANT OSCILLATIONS OF A RAPIDLY ROTATING BLACK-HOLE [J].
DETWEILER, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 352 (1670) :381-395
[28]   On an expansion method for black hole quasinormal modes and Regge poles [J].
Dolan, Sam R. ;
Ottewill, Adrian C. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (22)
[29]   Graviton emission from simply rotating Kerr-de Sitter black holes: Transverse traceless tensor graviton modes [J].
Doukas, Jason ;
Cho, H. T. ;
Cornell, A. S. ;
Naylor, Wade .
PHYSICAL REVIEW D, 2009, 80 (04)
[30]  
Emparan R., 2003, J HIGH ENERGY PHYS