Programmable multimode quantum networks

被引:140
作者
Armstrong, Seiji [1 ,2 ,3 ]
Morizur, Jean-Francois [1 ,4 ]
Janousek, Jiri [1 ,2 ]
Hage, Boris [1 ,2 ]
Treps, Nicolas [4 ]
Lam, Ping Koy [1 ,2 ]
Bachor, Hans-A. [1 ]
机构
[1] Australian Natl Univ, Dept Quantum Sci, Australian Ctr Quantum Atom Opt, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Dept Quantum Sci, Ctr Quantum Computat & Commun Technol, Canberra, ACT 0200, Australia
[3] Univ Tokyo, Sch Engn, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
[4] Univ Paris 06, CNRS, ENS, Lab Kastler Brossel, F-75252 Paris, France
基金
澳大利亚研究理事会;
关键词
ERROR-CORRECTION; ENTANGLEMENT; STATE; PHASE; MODE;
D O I
10.1038/ncomms2033
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entanglement between large numbers of quantum modes is the quintessential resource for future technologies such as the quantum internet. Conventionally, the generation of multimode entanglement in optics requires complex layouts of beamsplitters and phase shifters in order to transform the input modes into entangled modes. Here we report the highly versatile and efficient generation of various multimode entangled states with the ability to switch between different linear optics networks in real time. By defining our modes to be combinations of different spatial regions of one beam, we may use just one pair of multi-pixel detectors in order to measure multiple entangled modes. We programme virtual networks that are fully equivalent to the physical linear optics networks they are emulating. We present results for N = 2 up to N = 8 entangled modes here, including N = 2, 3, 4 cluster states. Our approach introduces the highly sought after attributes of flexibility and scalability to multimode entanglement.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Experimental creation of a fully inseparable tripartite continuous-variable state [J].
Aoki, T ;
Takei, N ;
Yonezawa, H ;
Wakui, K ;
Hiraoka, T ;
Furusawa, A ;
van Loock, P .
PHYSICAL REVIEW LETTERS, 2003, 91 (08) :804041-804044
[2]   Quantum error correction beyond qubits [J].
Aoki, Takao ;
Takahashi, Go ;
Kajiya, Tadashi ;
Yoshikawa, Jun-ichi ;
Braunstein, Samuel L. ;
van Loock, Peter ;
Furusawa, Akira .
NATURE PHYSICS, 2009, 5 (08) :541-546
[3]   Quantum state tomography with array detectors [J].
Beck, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (25) :5748-5751
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]   Biased EPR entanglement and its application to teleportation [J].
Bowen, WP ;
Lam, PK ;
Ralph, TC .
JOURNAL OF MODERN OPTICS, 2003, 50 (05) :801-813
[6]   Quantum error correction for communication with linear optics [J].
Braunstein, SL .
NATURE, 1998, 394 (6688) :47-49
[7]   Mode optimization for quantum-state tomography with array detectors [J].
Dawes, AM ;
Beck, M ;
Banaszek, K .
PHYSICAL REVIEW A, 2003, 67 (03) :6
[8]   Generation of a phase-flipped Gaussian mode for optical measurements [J].
Delaubert, V ;
Shaddock, DA ;
Lam, PK ;
Buchler, BC ;
Bachor, HA ;
McClelland, DE .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2002, 4 (04) :393-399
[9]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[10]   Unconditional quantum teleportation [J].
Furusawa, A ;
Sorensen, JL ;
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ ;
Polzik, ES .
SCIENCE, 1998, 282 (5389) :706-709