Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat

被引:99
作者
Kang, Zhiyu [1 ]
Babar, Md Ali [2 ]
Khan, Naeem [3 ]
Guo, Jia [2 ]
Khan, Jahangir [2 ]
Islam, Shafiqul [2 ]
Shrestha, Sumit [2 ]
Shahi, Dipendra [2 ]
机构
[1] Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming, Yunnan, Peoples R China
[2] Univ Florida, Dept Agron, Gainesville, FL 32611 USA
[3] Quaid I Azam Univ, Plant Sci, Islamabad, Pakistan
关键词
STRESS TOLERANCE; THYLAKOID MEMBRANES; BIOMASS ALLOCATION; PLANT-GROWTH; WINTER-WHEAT; GRAIN-YIELD; WATER; HEAT; MANNITOL; RESPONSES;
D O I
10.1371/journal.pone.0213502
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the contrasting biochemical changes in different plant parts in response to drought can help to formulate smart strategies to develop drought tolerant genotypes. The current study used metabolomics and physiological approaches to understand the differential biochemical changes coupled with physiological adjustments in leaves and roots to cope with drought stress in two wheat genotypes, LA754 (drought tolerant) and AGS2038 (drought sensitive). The gas chromatography-mass spectrometry (GC-MS) analysis and physiological trait estimation were performed in the roots and leaves after drought imposition. Drought induced reduction was observed in all physiological and yield related traits. In LA754, higher numbers of metabolites were altered in leaves (45) compared to roots (20) which indicates that plants allocated more resources to leaves in tolerant genotype. In addition, the metabolic components of the root were less affected by the stress which supports the idea that the roots are more drought tolerant than the leaf or shoot. In AGS2038, thirty and twenty eight metabolites were altered in the leaves and roots, respectively. This indicates that the sensitive genotype compromised resource allocation to leaves, rather allocated more towards roots. Tryptophan, valine, citric acid, fumaric acid, and malic acid showed higher accumulation in leaf in LA754, but decreased in the root, while glyceric acid was highly accumulated in the root, but not in the leaf. The results demonstrated that the roots and shoots have a different metabolic composition, and shoot metabolome is more variable than the root metabolome. Though the present study demonstrated that the metabolic response of shoots to drought contrasts with that of roots, some growth metabolites (protein, sugar, etc) showed a mirror increase in both parts. Protein synthesis and energy cycle was active in both organs, and the organs were metabolically activated to enhance water uptake and maintain growth to mitigate the effect of drought.
引用
收藏
页数:25
相关论文
共 76 条
[1]   Echinacea biotechnology:: Challenges and opportunities [J].
Abbasi, Bilal Haider ;
Saxena, Praveen K. ;
Murch, Susan J. ;
Liu, Chun-Zhao .
IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2007, 43 (06) :481-492
[2]   Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity [J].
Abebe, T ;
Guenzi, AC ;
Martin, B ;
Cushman, JC .
PLANT PHYSIOLOGY, 2003, 131 (04) :1748-1755
[3]   Root : shoot ratios, optimization and nitrogen productivity [J].
Ågren, GI ;
Franklin, O .
ANNALS OF BOTANY, 2003, 92 (06) :795-800
[4]  
Ahemad Munees, 2014, Journal of King Saud University Science, V26, P1, DOI 10.1016/j.jksus.2013.05.001
[5]  
[Anonymous], 2013, R LANG ENV STAT COMP
[6]   Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions [J].
Araus, JL ;
Amaro, T ;
Voltas, J ;
Nakkoul, H ;
Nachit, MM .
FIELD CROPS RESEARCH, 1998, 55 (03) :209-223
[7]   Wheat cellular thermotolerance is related to yield under heat stress [J].
Blum, A ;
Klueva, N ;
Nguyen, HT .
EUPHYTICA, 2001, 117 (02) :117-123
[8]  
Browne J, 2015, MOL PLANT, V5, P418
[9]   Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yu et Lu roots [J].
Cao, Yuan ;
Luo, Qiuxiang ;
Tian, Yan ;
Meng, Fanjuan .
BMC PLANT BIOLOGY, 2017, 17
[10]   Drought avoidance characteristics of diverse tall fescue cultivars [J].
Carrow, RN .
CROP SCIENCE, 1996, 36 (02) :371-377