Skeleton-Based Mutual Action Recognition Using Interactive Skeleton Graph and Joint Attention

被引:0
|
作者
Jia, Xiangze [1 ]
Zhang, Ji [2 ]
Wang, Zhen [3 ]
Luo, Yonglong [4 ]
Chen, Fulong [4 ]
Yang, Gaoming [5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Nanjing, Peoples R China
[2] Univ Southern Queensland, Toowoomba, Qld, Australia
[3] Zhejiang Lab, Hangzhou, Peoples R China
[4] Anhui Normal Univ, Wuhu, Peoples R China
[5] Anhui Univ Sci & Technol, Huainan, Peoples R China
来源
DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT II | 2022年 / 13427卷
关键词
Interactive skeleton graph; Joint attention; Action recognition;
D O I
10.1007/978-3-031-12426-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition relies on skeleton sequences to detect certain predetermined types of human actions. The existing related works are inadequate in mutual action recognition. We thus propose an innovative interactive skeleton graph to represent the skeleton data. In addition, because the GCN pays attention to the information about the edges in the skeleton graph which represent the interaction between joints, we propose a joint attention module that assists the model in paying attention to the pattern of vertices which represent the joints in the skeleton graph. We validate our model on the NTU RGB-D datasets, and the experimental results demonstrate the superiority of our model against other baseline methods in terms of recognition effectiveness in understanding mutual actions.
引用
收藏
页码:110 / 116
页数:7
相关论文
共 50 条
  • [41] Information Enhanced Graph Convolutional Networks for Skeleton-based Action Recognition
    Sun, Dengdi
    Zeng, Fanchen
    Luo, Bin
    Tang, Jin
    Ding, Zhuanlian
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [42] Enhanced decoupling graph convolution network for skeleton-based action recognition
    Gu, Yue
    Yu, Qiang
    Xue, Wanli
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (29) : 73289 - 73304
  • [43] Skeleton-Based ST-GCN for Human Action Recognition With Extended Skeleton Graph and Partitioning Strategy
    WANG, Q. U. A. N. Y. U.
    ZHANG, K. A. I. X. I. A. N. G.
    ASGHAR, M. A. N. J. O. T. H. O. A. L., I
    IEEE ACCESS, 2022, 10 : 41403 - 41410
  • [44] BODY PART LEVEL ATTENTION MODEL FOR SKELETON-BASED ACTION RECOGNITION
    Zhang, Han
    Song, Yonghong
    Zhang, Yuanlin
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4297 - 4302
  • [45] A Novel Skeleton Spatial Pyramid Model for Skeleton-based Action Recognition
    Li, Yanshan
    Guo, Tianyu
    Xia, Rongjie
    Liu, Xing
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 16 - 20
  • [46] Triplet attention multiple spacetime-semantic graph convolutional network for skeleton-based action recognition
    Yanjing Sun
    Han Huang
    Xiao Yun
    Bin Yang
    Kaiwen Dong
    Applied Intelligence, 2022, 52 : 113 - 126
  • [47] Skeleton-based Human Action Recognition via Large-kernel Attention Graph Convolutional Network
    Liu, Yanan
    Zhang, Hao
    Li, Yanqiu
    He, Kangjian
    Xu, Dan
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (05) : 2575 - 2585
  • [48] SpatioTemporal focus for skeleton-based action recognition
    Wu, Liyu
    Zhang, Can
    Zou, Yuexian
    PATTERN RECOGNITION, 2023, 136
  • [49] Triplet attention multiple spacetime-semantic graph convolutional network for skeleton-based action recognition
    Sun, Yanjing
    Huang, Han
    Yun, Xiao
    Yang, Bin
    Dong, Kaiwen
    APPLIED INTELLIGENCE, 2022, 52 (01) : 113 - 126
  • [50] Attention module-based spatial-temporal graph convolutional networks for skeleton-based action recognition
    Kong, Yinghui
    Li, Li
    Zhang, Ke
    Ni, Qiang
    Han, Jungong
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)