Skeleton-Based Mutual Action Recognition Using Interactive Skeleton Graph and Joint Attention

被引:0
|
作者
Jia, Xiangze [1 ]
Zhang, Ji [2 ]
Wang, Zhen [3 ]
Luo, Yonglong [4 ]
Chen, Fulong [4 ]
Yang, Gaoming [5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Nanjing, Peoples R China
[2] Univ Southern Queensland, Toowoomba, Qld, Australia
[3] Zhejiang Lab, Hangzhou, Peoples R China
[4] Anhui Normal Univ, Wuhu, Peoples R China
[5] Anhui Univ Sci & Technol, Huainan, Peoples R China
来源
DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT II | 2022年 / 13427卷
关键词
Interactive skeleton graph; Joint attention; Action recognition;
D O I
10.1007/978-3-031-12426-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition relies on skeleton sequences to detect certain predetermined types of human actions. The existing related works are inadequate in mutual action recognition. We thus propose an innovative interactive skeleton graph to represent the skeleton data. In addition, because the GCN pays attention to the information about the edges in the skeleton graph which represent the interaction between joints, we propose a joint attention module that assists the model in paying attention to the pattern of vertices which represent the joints in the skeleton graph. We validate our model on the NTU RGB-D datasets, and the experimental results demonstrate the superiority of our model against other baseline methods in terms of recognition effectiveness in understanding mutual actions.
引用
收藏
页码:110 / 116
页数:7
相关论文
共 50 条
  • [21] Feedback Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Hao
    Yan, Dan
    Zhang, Li
    Sun, Yunda
    Li, Dong
    Maybank, Stephen J.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 164 - 175
  • [22] Shuffle Graph Convolutional Network for Skeleton-Based Action Recognition
    Yu, Qiwei
    Dai, Yaping
    Hirota, Kaoru
    Shao, Shuai
    Dai, Wei
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (05) : 790 - 800
  • [23] GRAPH CONVOLUTIONAL LSTM MODEL FOR SKELETON-BASED ACTION RECOGNITION
    Zhang, Han
    Song, Yonghong
    Zhang, Yuanlin
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 412 - 417
  • [24] Channel attention and multi-scale graph neural networks for skeleton-based action recognition
    Dang, Ronghao
    Liu, Chengju
    Liu, Ming
    Chen, Qijun
    AI COMMUNICATIONS, 2022, 35 (03) : 187 - 205
  • [25] Multi-scale Dilated Attention Graph Convolutional Network for Skeleton-Based Action Recognition
    Shu, Yang
    Li, Wanggen
    Li, Doudou
    Gao, Kun
    Jie, Biao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT I, 2024, 14425 : 16 - 28
  • [26] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [27] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [28] Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [29] Selective directed graph convolutional network for skeleton-based action recognition
    Ke, Chengyuan
    Liu, Sheng
    Feng, Yuan
    Chen, Shengyong
    PATTERN RECOGNITION LETTERS, 2025, 190 : 141 - 146
  • [30] Fast Temporal Graph Convolutional Model for Skeleton-Based Action Recognition
    Nan, Mihai
    Florea, Adina Magda
    SENSORS, 2022, 22 (19)