Towards Anomaly-resistant Graph Neural Networks via Reinforcement Learning

被引:5
|
作者
Ding, Kaize [1 ]
Shan, Xuan [2 ]
Liu, Huan [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Kwai Inc, Palo Alto, CA USA
关键词
Graph neural networks; Robustness; Reinforcement learning;
D O I
10.1145/3459637.3482203
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In general, graph neural networks (GNNs) adopt the message-passing scheme to capture the information of a node (i.e., nodal attributes, and local graph structure) by iteratively transforming, aggregating the features of its neighbors. Nonetheless, recent studies show that the performance of GNNs can be easily hampered by the existence of abnormal or malicious nodes due to the vulnerability of neighborhood aggregation. Thus it is necessary to learn anomalyresistant GNNs without the prior knowledge of ground-truth anomalies, given the fact that labeling anomalies is costly and requires intensive domain knowledge. In order to keep the effectiveness of GNNs on anomaly-contaminated graphs, in this paper, we propose a new framework named RARE-GNN (Reinforced AnomalyREsistant Graph Neural Networks) which can detect anomalies from the input graph and learn anomaly-resistant GNNs simultaneously. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed framework.
引用
收藏
页码:2979 / 2983
页数:5
相关论文
共 50 条
  • [31] Dynamic Representation Learning via Recurrent Graph Neural Networks
    Zhang, Chun-Yang
    Yao, Zhi-Liang
    Yao, Hong-Yu
    Huang, Feng
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (02): : 1284 - 1297
  • [32] Learning Deep Graph Representations via Convolutional Neural Networks
    Ye, Wei
    Askarisichani, Omid
    Jones, Alex
    Singh, Ambuj
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2268 - 2279
  • [33] Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration
    Wang, Xiao
    Liu, Hongrui
    Shi, Chuan
    Yang, Cheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [34] Towards Deeper Graph Neural Networks via Layer-Adaptive
    Xu, Bingbing
    Xie, Bin
    Shen, Huawei
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 103 - 106
  • [35] FlowX: Towards Explainable Graph Neural Networks via Message Flows
    Gui, Shurui
    Yuan, Hao
    Wang, Jie
    Lao, Qicheng
    Li, Kang
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (07) : 4567 - 4578
  • [36] Deep reinforcement learning guided graph neural networks for brain network analysis
    Zhao, Xusheng
    Wu, Jia
    Peng, Hao
    Beheshti, Amin
    Monaghan, Jessica J. M.
    McAlpine, David
    Hernandez-Perez, Heivet
    Dras, Mark
    Dai, Qiong
    Li, Yangyang
    Yu, Philip S.
    He, Lifang
    NEURAL NETWORKS, 2022, 154 : 56 - 67
  • [37] Field-informed Reinforcement Learning of Collective Tasks with Graph Neural Networks
    Aguzzi, Gianluca
    Viroli, Mirko
    Esterle, Lukas
    2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS, ACSOS, 2023, : 37 - 46
  • [38] Combining Deep Reinforcement Learning With Graph Neural Networks for Optimal VNF Placement
    Sun, Penghao
    Lan, Julong
    Li, Junfei
    Guo, Zehua
    Hu, Yuxiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (01) : 176 - 180
  • [39] A Deep Reinforcement Learning Heuristic for SAT based on Antagonist Graph Neural Networks
    Fournier, Thomas
    Lallouet, Arnaud
    Cropsal, Telio
    Glorian, Gael
    Papadopoulos, Alexandre
    Petitet, Antoine
    Perez, Guillaume
    Sekar, Suruthy
    Suijlen, Wijnand
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 1218 - 1222
  • [40] Anomaly Detection in In-Vehicle Networks with Graph Neural Networks
    Ozdemir, Övgü
    Karagoz, Pinar
    Schmidt, Klaus Werner
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,