Integer Ambiguity Resolution by Mixture Kalman Filter for Improved GNSS Precision

被引:20
作者
Berntorp, Karl [1 ,2 ]
Weiss, Avishai [1 ,2 ]
Di Cairano, Stefano [2 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
关键词
Receivers; Global navigation satellite system; Satellites; Satellite broadcasting; Kalman filters; Extraterrestrial measurements; Time measurement; PARTICLE FILTERS;
D O I
10.1109/TAES.2020.2965715
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Accurate carrier-phase integer ambiguity resolution is fundamental to high-precision global navigation satellite systems (GNSSs). Real-time GNSSs typically resolve the ambiguities by a combination of recursive estimators and integer least-squares solvers, which need to be reset when satellites are added or cycle slip occurs. In this article, we propose a mixture Kalman filter solution to integer ambiguity resolution. By marginalizing out the set of ambiguities and exploiting a likelihood proposal for generating the ambiguities, we can bound the possible values to a tight and dense set of integers. Thus, we extract the state and integer estimates from a mixture Kalman filter. The proposed approach yields an integrated method to detect cycle slip and initialize new satellites. Numerical analysis and experimental results indicate that the proposed method achieves reliable position estimates, repeatedly finds the correct integers in cases when other methods may fail, and is more robust to cycle slip.
引用
收藏
页码:3170 / 3181
页数:12
相关论文
共 28 条
[1]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[2]  
Azimi-Sadjadi B, 2001, P AMER CONTR CONF, P3761, DOI 10.1109/ACC.2001.946221
[3]  
Betti B., 1993, Manuscripta Geodaetica, V18, P317
[4]  
Blewitt G., 1997, GEODETIC APPL GPS, P10
[5]   MLAMBDA: a modified LAMBDA method for integer least-squares estimation [J].
Chang, XW ;
Yang, X ;
Zhou, T .
JOURNAL OF GEODESY, 2005, 79 (09) :552-565
[6]  
Grafarend E W., 2000, GPS Solutions, Vol, V4, No, P31
[7]  
Grover Brown R., 1983, Navigation. Journal of the Institute of Navigation, V30, P338
[8]   Confidence regions for GPS baselines by Bayesian statistics [J].
Gundlich, B ;
Koch, KR .
JOURNAL OF GEODESY, 2002, 76 (01) :55-62
[9]  
Gundlich B., 2004, 5 HOT MAR S MATH GEO, P129
[10]  
Gustafsson F., 2010, Statistical Sensor Fusion