Feynman Integrals and Motives of Configuration Spaces

被引:5
作者
Ceyhan, Ozgur [1 ,2 ]
Marcolli, Matilde [3 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[3] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
QUANTUM-FIELD THEORY; COMPACTIFICATION; RENORMALIZATION; PERIODS; HODGE; FILTRATIONS; DIAGRAMS;
D O I
10.1007/s00220-012-1484-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate the problem of renormalization of Feynman integrals and its relation to periods of motives in configuration space instead of momentum space. The algebro-geometric setting is provided by the wonderful compactifications of arrangements of subvarieties associated to the subgraphs of a Feynman graph I", with X a (quasi)projective variety. The motive and the class in the Grothendieck ring are computed explicitly for these wonderful compactifications, in terms of the motive of X and the combinatorics of the Feynman graph, using recent results of Li Li. The pullback to the wonderful compactification of the form defined by the unrenormalized Feynman amplitude has singularities along a hypersurface, whose real locus is contained in the exceptional divisors of the iterated blowup that gives the wonderful compactification. A regularization of the Feynman integrals can be obtained by modifying the cycle of integration, by replacing the divergent locus with a Leray coboundary. The ambiguities are then defined by Poincar, residues. While these residues give periods associated to the cohomology of the exceptional divisors and their intersections, the regularized integrals give rise to periods of the hypersurface complement in the wonderful compactification.
引用
收藏
页码:35 / 70
页数:36
相关论文
共 50 条
  • [21] Feynman integrals as A-hypergeometric functions
    de la Cruz, Leonardo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [22] Massive Feynman integrals and electroweak corrections
    Gluza, Janusz
    Riemann, Tord
    [J]. NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2015, 261 : 140 - 154
  • [23] Feynman integrals from positivity constraints
    Zeng, Mao
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
  • [24] OPITER: A program for tensor reduction of multi-loop Feynman integrals
    Goode, Jae
    Herzog, Franz
    Teale, Sam
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2025, 312
  • [25] Duals of Feynman Integrals. Part II. Generalized unitarity
    Caron-Huot, Simon
    Pokraka, Andrzej
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
  • [26] Sequential discontinuities of Feynman integrals and the monodromy group
    Bourjaily, Jacob L.
    Hannesdottir, Holmfridur
    McLeod, Andrew J.
    Schwartz, Matthew D.
    Vergu, Cristian
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [27] THE PROPERTY OF MAXIMAL TRANSCENDENTALITY: CALCULATION OF FEYNMAN INTEGRALS
    Kotikov, A. V.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 190 (03) : 391 - 401
  • [28] Scattering amplitudes, Feynman integrals and multiple polylogarithms
    Duhr, Claude
    [J]. FEYNMAN AMPLITUDES, PERIODS AND MOTIVES, 2015, 648 : 109 - 133
  • [29] Picard-Fuchs Equations for Feynman Integrals
    Mueller-Stach, Stefan
    Weinzierl, Stefan
    Zayadeh, Raphael
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) : 237 - 249
  • [30] GKZ-hypergeometric systems for Feynman integrals
    Feng, Tai-Fu
    Chang, Chao-Hsi
    Chen, Jian-Bin
    Zhang, Hai-Bin
    [J]. NUCLEAR PHYSICS B, 2020, 953