Feynman Integrals and Motives of Configuration Spaces

被引:5
|
作者
Ceyhan, Ozgur [1 ,2 ]
Marcolli, Matilde [3 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[3] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
QUANTUM-FIELD THEORY; COMPACTIFICATION; RENORMALIZATION; PERIODS; HODGE; FILTRATIONS; DIAGRAMS;
D O I
10.1007/s00220-012-1484-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate the problem of renormalization of Feynman integrals and its relation to periods of motives in configuration space instead of momentum space. The algebro-geometric setting is provided by the wonderful compactifications of arrangements of subvarieties associated to the subgraphs of a Feynman graph I", with X a (quasi)projective variety. The motive and the class in the Grothendieck ring are computed explicitly for these wonderful compactifications, in terms of the motive of X and the combinatorics of the Feynman graph, using recent results of Li Li. The pullback to the wonderful compactification of the form defined by the unrenormalized Feynman amplitude has singularities along a hypersurface, whose real locus is contained in the exceptional divisors of the iterated blowup that gives the wonderful compactification. A regularization of the Feynman integrals can be obtained by modifying the cycle of integration, by replacing the divergent locus with a Leray coboundary. The ambiguities are then defined by Poincar, residues. While these residues give periods associated to the cohomology of the exceptional divisors and their intersections, the regularized integrals give rise to periods of the hypersurface complement in the wonderful compactification.
引用
收藏
页码:35 / 70
页数:36
相关论文
共 50 条
  • [1] Feynman Integrals and Motives of Configuration Spaces
    Ozgür Ceyhan
    Matilde Marcolli
    Communications in Mathematical Physics, 2012, 313 : 35 - 70
  • [2] Algebraic renormalization and Feynman integrals in configuration spaces
    Ceyhan, Oezguer
    Marcolli, Matilde
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 18 (02) : 469 - 511
  • [3] Feynman integrals and motives
    Marcolli, Matilde
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 293 - 332
  • [4] Surface integrals in Riemannian spaces and Feynman formulas
    Smolyanov, O. G.
    von Weizsaecker, H.
    Wittich, O.
    DOKLADY MATHEMATICS, 2006, 73 (03) : 432 - 436
  • [5] Surface integrals in Riemannian spaces and Feynman formulas
    O. G. Smolyanov
    H. von Weizsaecker
    O. Wittich
    Doklady Mathematics, 2006, 73 : 432 - 436
  • [6] Conditional integrals on abstract Wiener and Hilbert spaces with application to Feynman integrals
    Chung, DM
    Kang, SJ
    Lim, KP
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (02) : 319 - 344
  • [7] Feynman integrals and iterated integrals on moduli spaces of curves of genus zero
    Bogner, Christian
    Brown, Francis
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2015, 9 (01) : 189 - 238
  • [8] Feynman integrals in dimensional regularization and extensions of Calabi-Yau motives
    Kilian Bönisch
    Claude Duhr
    Fabian Fischbach
    Albrecht Klemm
    Christoph Nega
    Journal of High Energy Physics, 2022
  • [9] Feynman integrals in dimensional regularization and extensions of Calabi-Yau motives
    Bonisch, Kilian
    Duhr, Claude
    Fischbach, Fabian
    Klemm, Albrecht
    Nega, Christoph
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [10] FOURIER FEYNMAN TRANSFORMS AND ANALYTIC FEYNMAN INTEGRALS AND CONVOLUTIONS OF A FOURIER TRANSFORM μ OF A MEASURE ON WIENER SPACES
    Kim, Young Sik
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (04): : 1139 - 1158