Statistical inference for perturbed multiscale dynamical systems

被引:11
作者
Gailus, Siragan [1 ]
Spiliopoulos, Konstantinos [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Multiscale processes; Small noise; Parameter estimation; Stochastic dynamical systems; DIFFUSION-APPROXIMATION; PARAMETRIC-ESTIMATION; POISSON EQUATION; VOLATILITY; ASYMPTOTICS;
D O I
10.1016/j.spa.2016.06.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study statistical inference for small-noise-perturbed multiscale dynamical systems. We prove consistency, asymptotic normality, and convergence of all scaled moments of an appropriately constructed maximum likelihood estimator (MLE) for a parameter of interest, identifying precisely its limiting variance. We allow full dependence of coefficients on both slow and fast processes, which take values in the full Euclidean space; coefficients in the equation for the slow process need not be bounded and there is no assumption of periodic dependence. The results provide a theoretical basis for calibration of small-noise perturbed multiscale dynamical systems. Data from numerical simulations are presented to illustrate the theory. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:419 / 448
页数:30
相关论文
共 50 条
[41]   Statistical inference under multiterminal data compression [J].
Han, TS ;
Amari, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2300-2324
[42]   Statistical Inference in a Directed Network Model With Covariates [J].
Yan, Ting ;
Jiang, Binyan ;
Fienberg, Stephen E. ;
Leng, Chenlei .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) :857-868
[43]   Statistical inference for the ε-entropy and the quadratic Renyi entropy [J].
Leonenko, Nikolaj ;
Seleznjev, Oleg .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (09) :1981-1994
[44]   Conditional Statistical Inference with Multistage Testing Designs [J].
Zwitser, Robert J. ;
Maris, Gunter .
PSYCHOMETRIKA, 2015, 80 (01) :65-84
[45]   Conditional Statistical Inference with Multistage Testing Designs [J].
Robert J. Zwitser ;
Gunter Maris .
Psychometrika, 2015, 80 :65-84
[47]   Statistical Inference for Aggregation of Malmquist Productivity Indices [J].
Pham, Manh ;
Simar, Leopold ;
Zelenyukc, Valentin .
OPERATIONS RESEARCH, 2024, 72 (04) :1615-1629
[48]   STATISTICAL INFERENCE FOR GEOMETRIC PROCESS WITH THE RAYLEIGH DISTRIBUTION [J].
Bicer, Cenker ;
Bicer, Hayrinisa Demirci ;
Kara, Mahmut ;
Aydogdu, Halil .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01) :149-160
[49]   Comparing methods for statistical inference with model uncertainty [J].
Porwal, Anupreet ;
Raftery, Adrian E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (16)
[50]   Optimal Control and Additive Perturbations Help in Estimating Ill-Posed and Uncertain Dynamical Systems [J].
Clairon, Quentin ;
Brunel, Nicolas J. -B. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) :1195-1209