Statistical inference for perturbed multiscale dynamical systems

被引:11
作者
Gailus, Siragan [1 ]
Spiliopoulos, Konstantinos [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Multiscale processes; Small noise; Parameter estimation; Stochastic dynamical systems; DIFFUSION-APPROXIMATION; PARAMETRIC-ESTIMATION; POISSON EQUATION; VOLATILITY; ASYMPTOTICS;
D O I
10.1016/j.spa.2016.06.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study statistical inference for small-noise-perturbed multiscale dynamical systems. We prove consistency, asymptotic normality, and convergence of all scaled moments of an appropriately constructed maximum likelihood estimator (MLE) for a parameter of interest, identifying precisely its limiting variance. We allow full dependence of coefficients on both slow and fast processes, which take values in the full Euclidean space; coefficients in the equation for the slow process need not be bounded and there is no assumption of periodic dependence. The results provide a theoretical basis for calibration of small-noise perturbed multiscale dynamical systems. Data from numerical simulations are presented to illustrate the theory. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:419 / 448
页数:30
相关论文
共 50 条
[31]   Statistical inference with mobility indices [J].
Schluter, C .
ECONOMICS LETTERS, 1998, 59 (02) :157-162
[32]   A Framework for Statistical Inference in Astrophysics [J].
Schafer, Chad M. .
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 2, 2015, 2 :141-162
[33]   Statistical inference of semidefinite programming [J].
Alexander Shapiro .
Mathematical Programming, 2019, 174 :77-97
[34]   Statistical inference of semidefinite programming [J].
Shapiro, Alexander .
MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) :77-97
[35]   Statistical performance of local attractor dimension estimators in non-Axiom A dynamical systems [J].
Pons, Flavio ;
Messori, Gabriele ;
Faranda, Davide .
CHAOS, 2023, 33 (07)
[36]   Bayesian inference and optimisation of stochastic dynamical networks [J].
He, Xin ;
Wang, Yasen ;
Jin, Junyang .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (13) :2589-2603
[37]   Statistical Model for Biochemical Network Inference [J].
Craciun, Gheorghe ;
Kim, Jaejik ;
Pantea, Casian ;
Rempala, Grzegorz A. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (01) :121-137
[38]   Statistical Inference With Limited Memory: A Survey [J].
Berg, Tomer ;
Ordentlich, Or ;
Shayevitz, Ofer .
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2024, 5 :623-644
[39]   Statistical inference for the first-order autoregressive process with the fractional Gaussian noise [J].
Huang, Yinzhong ;
Xiao, Weilin ;
Yu, Xiaojian .
QUANTITATIVE FINANCE, 2024, 24 (10) :1509-1527
[40]   STATISTICAL INFERENCE OF SEMIDEFINITE PROGRAMMING WITH MULTIPLE PARAMETERS [J].
Wang, Jiani ;
Zhang, Liwei .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (03) :1527-1538