Statistical inference for perturbed multiscale dynamical systems

被引:11
作者
Gailus, Siragan [1 ]
Spiliopoulos, Konstantinos [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Multiscale processes; Small noise; Parameter estimation; Stochastic dynamical systems; DIFFUSION-APPROXIMATION; PARAMETRIC-ESTIMATION; POISSON EQUATION; VOLATILITY; ASYMPTOTICS;
D O I
10.1016/j.spa.2016.06.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study statistical inference for small-noise-perturbed multiscale dynamical systems. We prove consistency, asymptotic normality, and convergence of all scaled moments of an appropriately constructed maximum likelihood estimator (MLE) for a parameter of interest, identifying precisely its limiting variance. We allow full dependence of coefficients on both slow and fast processes, which take values in the full Euclidean space; coefficients in the equation for the slow process need not be bounded and there is no assumption of periodic dependence. The results provide a theoretical basis for calibration of small-noise perturbed multiscale dynamical systems. Data from numerical simulations are presented to illustrate the theory. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:419 / 448
页数:30
相关论文
共 50 条
[21]   STATISTICAL STRUCTURING THEORY IN PARAMETRICALLY EXCITABLE DYNAMICAL SYSTEMS WITH A GAUSSIAN PUMP [J].
Klyatskin, V. I. ;
Koshel, K. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 186 (03) :411-429
[22]   Identification of multiscale spatio-temporal dynamical systems using a wavelet multiresolution analysis [J].
Guo, L. Z. ;
Billings, S. A. ;
Coca, D. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2009, 40 (11) :1115-1126
[23]   Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed Levy type noise [J].
Hoegele, Michael ;
Pavlyukevich, Ilya .
STOCHASTICS AND DYNAMICS, 2015, 15 (03)
[24]   On the Problem of Minimum Asymptotic Exit Rate for Stochastically Perturbed Multi-Channel Dynamical Systems [J].
Befekadu, Getachew K. ;
Antsaklis, Panos J. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (12) :3391-3395
[25]   Auxiliary MCMC samplers for parallelisable inference in high-dimensional latent dynamical systems [J].
Corenflos, Adrien ;
Sarkka, Simo .
ELECTRONIC JOURNAL OF STATISTICS, 2025, 19 (01) :1370-1424
[26]   Statistical inference for nonergodic weighted fractional Vasicek models [J].
Es-Sebaiy, Khalifa ;
Al-Foraih, Mishari ;
Alazemi, Fares .
MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2021, 8 (03) :291-307
[27]   Statistical Inference for Multi State Systems under the Generalized Modified Weibull Class [J].
Makrides, Andreas .
JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2022, 15 (02) :411-430
[28]   Moderate deviations for fully coupled multiscale weakly interacting particle systems [J].
Bezemek, Z. W. ;
Spiliopoulos, K. .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (02) :1265-1373
[29]   Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods [J].
Calderhead, Ben ;
Girolami, Mark .
INTERFACE FOCUS, 2011, 1 (06) :821-835
[30]   Statistical Inference and Malliavin Calculus [J].
Corcuera, Jose M. ;
Kohatsu-Higa, Arturo .
SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 :59-+