Statistical inference for perturbed multiscale dynamical systems

被引:10
作者
Gailus, Siragan [1 ]
Spiliopoulos, Konstantinos [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Multiscale processes; Small noise; Parameter estimation; Stochastic dynamical systems; DIFFUSION-APPROXIMATION; PARAMETRIC-ESTIMATION; POISSON EQUATION; VOLATILITY; ASYMPTOTICS;
D O I
10.1016/j.spa.2016.06.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study statistical inference for small-noise-perturbed multiscale dynamical systems. We prove consistency, asymptotic normality, and convergence of all scaled moments of an appropriately constructed maximum likelihood estimator (MLE) for a parameter of interest, identifying precisely its limiting variance. We allow full dependence of coefficients on both slow and fast processes, which take values in the full Euclidean space; coefficients in the equation for the slow process need not be bounded and there is no assumption of periodic dependence. The results provide a theoretical basis for calibration of small-noise perturbed multiscale dynamical systems. Data from numerical simulations are presented to illustrate the theory. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:419 / 448
页数:30
相关论文
共 50 条
  • [1] DISCRETE-TIME STATISTICAL INFERENCE FOR MULTISCALE DIFFUSIONS
    Gailus, Siragan
    Spiliopoulos, Konstantinos
    MULTISCALE MODELING & SIMULATION, 2018, 16 (04) : 1824 - 1858
  • [2] Statistical inference for dynamical systems: A review
    McGoff, Kevin
    Mukherjee, Sayan
    Pillai, Natesh
    STATISTICS SURVEYS, 2015, 9 : 209 - 252
  • [3] DISCRETE-TIME INFERENCE FOR SLOW-FAST SYSTEMS DRIVEN BY FRACTIONAL BROWNIAN MOTION
    Bourguin, Solesne
    Gailus, Siragan
    Spiliopoulos, Konstantinos
    MULTISCALE MODELING & SIMULATION, 2021, 19 (03) : 1333 - 1366
  • [4] On cusp location estimation for perturbed dynamical systems
    Kutoyants, Yury A.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (04) : 1206 - 1226
  • [5] Scalable Variational Inference for Dynamical Systems
    Gorbach, Nico S.
    Bauer, Stefan
    Buhmann, Joachim M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [6] Moderate Deviation Principle for Multiscale Systems Driven by Fractional Brownian Motion
    Bourguin, Solesne
    Dang, Thanh
    Spiliopoulos, Konstantinos
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 352 - 408
  • [7] R package for statistical inference in dynamical systems using kernel based gradient matching: KGode
    Niu, Mu
    Wandy, Joe
    Daly, Ronon
    Rogers, Simon
    Husmeier, Dirk
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 715 - 747
  • [8] ASYMPTOTIC INFERENCE FOR DYNAMICAL-SYSTEMS OBSERVED WITH ERROR
    MACEACHERN, SN
    BERLINER, LM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 46 (03) : 277 - 292
  • [9] Weak-form inference for hybrid dynamical systems in ecology
    Messenger, Daniel
    Dwyer, Greg
    Dukic, Vanja
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2024, 21 (221)
  • [10] deBInfer: Bayesian inference for dynamical models of biological systems in R
    Boersch-Supan, Philipp H.
    Ryan, Sadie J.
    Johnson, Leah R.
    METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (04): : 511 - 518