A SOLITON HIERARCHY FROM THE LEVI SPECTRAL PROBLEM AND ITS TWO INTEGRABLE COUPLINGS, HAMILTONIAN STRUCTURE

被引:0
作者
zhang, Yongqing [1 ]
li, Yan [1 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2009年 / 23卷 / 05期
关键词
Soliton equation; Lie algebra; Hamiltonian structure; SEMIDIRECT SUMS; LIE-ALGEBRAS; TRANSFORMATIONS; EQUATIONS; IDENTITY;
D O I
10.1142/S0217984909018953
中图分类号
O59 [应用物理学];
学科分类号
摘要
A soliton-equation hierarchy from the D. Levi spectral problem is obtained under the framework of zero curvature equation. By employing two various multi-component Lie algebras and the loop algebras, we enlarge the Levi spectral problem and the corresponding time-part isospectral problems so that two different integrable couplings are produced. Using the quadratic-form identity yields the Hamiltonian structure of one of the two integrable couplings.
引用
收藏
页码:731 / 739
页数:9
相关论文
共 26 条
  • [1] Arnold V. I., 1978, Mathematical methods of classical mechanics
  • [2] BOITI M, 1983, NUOVO CIMENTO B, V75, P145
  • [3] SYMPLECTIC STRUCTURES, THEIR BACKLUND-TRANSFORMATIONS AND HEREDITARY SYMMETRIES
    FUCHSSTEINER, B
    FOKAS, AS
    [J]. PHYSICA D, 1981, 4 (01): : 47 - 66
  • [4] The quadratic-form identity for constructing the Hamiltonian structure of integrable systems
    Guo, FK
    Zhang, YF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (40): : 8537 - 8548
  • [5] A family of expanding integrable models of AKNS hierarchy of equations
    Guo, FK
    Zhang, YF
    [J]. ACTA PHYSICA SINICA, 2002, 51 (05) : 951 - 954
  • [6] Two unified formulae
    Guo, Fukui
    Zhang, Yufeng
    [J]. PHYSICS LETTERS A, 2007, 366 (4-5) : 403 - 410
  • [7] KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .5. UNIQUENESS AND NONEXISTENCE OF POLYNOMIAL CONSERVATION LAWS
    KRUSKAL, MD
    MIURA, RM
    GARDNER, CS
    ZABUSKY, NJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (03) : 952 - &
  • [8] A HIERARCHY OF COUPLED KORTEWEG-DE VRIES EQUATIONS AND THE NORMALIZATION CONDITIONS OF THE HILBERT-RIEMANN PROBLEM
    LEVI, D
    SYM, A
    WOJCIECHOWSKI, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (11): : 2423 - 2432
  • [9] Ma W. X., 1992, Chin. Ann. Math. Ser. A, V13, P115
  • [10] Ma W.X., 2000, METHODS APPL ANAL, V7, P21