TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor

被引:49
作者
Ghosh, Arunabha [1 ,2 ]
Viet Thong Le [1 ,2 ]
Bae, Jung Jun [1 ,2 ]
Lee, Young Hee [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Inst Basic Sci, IBS Ctr Integrated Nanostruct Phys, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Dept Phys, Dept Energy Sci, Sungkyunkwan Adv Inst Nanotechnol, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
REDUCED GRAPHENE OXIDE; MICRO-SUPERCAPACITORS; IMPEDANCE SPECTROSCOPY; DIRECT CARBONIZATION; NANOPOROUS CARBONS; FABRICATION; FILMS; ELECTRODES; CAPACITOR; POLYMER;
D O I
10.1038/srep02939
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical capacitors with fast charging-discharging rates are very promising for hybrid electric vehicle industries including portable electronics. Complicated pore structures have been implemented in active materials to increase energy storage capacity, which often leads to degrade dynamic response of ions. In order to understand this trade-off phenomenon, we report a theoretical model based on transmission line model which is further combined with pore size distribution function. The model successfully explained how pores length, and pore radius of active materials and electrolyte conductivity can affect capacitance and dynamic performance of different capacitors. The powerfulness of the model was confirmed by comparing with experimental results of a micro-supercapacitor consisted of vertically aligned multiwalled carbon nanotubes (v-MWCNTs), which revealed a linear current increase up to 600 Vs(-1) scan rate demonstrating an ultrafast dynamic behavior, superior to randomly entangled singlewalled carbon nanotube device, which is clearly explained by the theoretical model.
引用
收藏
页数:10
相关论文
共 42 条
[1]  
Beguin F, 2010, ADV MAT TECH SER, P1
[2]   Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance [J].
Beidaghi, Majid ;
Wang, Chunlei .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) :4501-4510
[3]   Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes [J].
Beidaghi, Majid ;
Wang, Chunlei .
ELECTROCHIMICA ACTA, 2011, 56 (25) :9508-9514
[4]   A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications [J].
Chaikittisilp, Watcharop ;
Ariga, Katsuhiko ;
Yamauchi, Yusuke .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (01) :14-19
[5]   Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes [J].
Chaikittisilp, Watcharop ;
Hu, Ming ;
Wang, Hongjing ;
Huang, Hou-Sheng ;
Fujita, Taketoshi ;
Wu, Kevin C. -W. ;
Chen, Lin-Chi ;
Yamauchi, Yusuke ;
Ariga, Katsuhiko .
CHEMICAL COMMUNICATIONS, 2012, 48 (58) :7259-7261
[6]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[7]   Effect of pore size and surface area of carbide derived carbons on specific capacitance [J].
Chmiola, J. ;
Yushin, G. ;
Dash, R. ;
Gogotsi, Y. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :765-772
[8]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[9]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[10]  
Conway B.E., 1999, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications