Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate

被引:49
作者
Behzadirad, Mahmoud [1 ,2 ]
Nami, Mohsen [1 ,2 ]
Wostbrock, Neal [1 ,3 ]
Kouhpanji, Mohammad Reza Zamani [1 ,4 ]
Feezell, Daniel F. [1 ,4 ]
Brueck, Steven R. J. [1 ,4 ]
Busani, Tito [1 ,4 ]
机构
[1] Univ New Mexico, CHTM, MSC01 04-2710,1313 Goddard SE, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Dept Phys & Astron, 1919 Lomas Blvd NE, Albuquerque, NM 87131 USA
[3] Nanosci & Microsyst NSMS Engn, 210 Univ Blvd NE, Albuquerque, NM 87131 USA
[4] Univ New Mexico, ECE, MSC01 11001, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
GaN nanowires; highly ordered nanowires; nanowire laser arrays; top-down approach; interferometric lithography (IL); single-mode laser; OPTICAL-PROPERTIES; FABRICATION;
D O I
10.1021/acsnano.7b07653
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {1 (1) over bar 00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10(5) mu m(2)) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (<1 nm). FDTD modeling demonstrated HE11 is the dominant transverse mode in the nanowires with a radius of sub-100 nm, and single-mode lasing from vertical cavity nanowire arrays with different doping concentrations on a sapphire substrate was interestingly observed in photoluminescence measurements. High Q-factors of similar to 1139-2443 were obtained in nanowire array lasers with a radius and length of 65 nm and 2 mu m, respectively, corresponding to a line width of 0.32-0.15 nm (minimum threshold of 3.31 MW/cm(2)). Our results show that fabrication of high-quality GaN nanowire arrays with adaptable aspect ratio and large-area uniformity is feasible through a top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.
引用
收藏
页码:2373 / 2380
页数:8
相关论文
共 41 条
[21]   Origin of Yellow-Band Emission in Epitaxially Grown GaN Nanowire Arrays [J].
Liu, Baodan ;
Yuan, Fang ;
Dierre, Benjamin ;
Sekiguchi, Takashi ;
Zhang, Song ;
Xu, Yongkuan ;
Jiang, Xin .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (16) :14159-14166
[22]   Top-down fabrication of horizontally-aligned gallium nitride nanowire arrays for sensor development [J].
Liu, Guannan ;
Wen, Baomei ;
Xie, Ting ;
Castillo, Audie ;
Ha, Jong-Yong ;
Sullivan, Nichole ;
Debnath, Ratan ;
Davydov, Albert ;
Peckerar, Martin ;
Motayed, Abhishek .
MICROELECTRONIC ENGINEERING, 2015, 142 :58-63
[23]   Reflection of guided modes in a semiconductor nanowire laser [J].
Maslov, AV ;
Ning, CZ .
APPLIED PHYSICS LETTERS, 2003, 83 (06) :1237-1239
[24]   Single quantum dot nanowire LEDs [J].
Minot, Ethan D. ;
Kelkensberg, Freek ;
van Kouwen, Maarten ;
van Dam, Jorden A. ;
Kouwenhoven, Leo P. ;
Zwiller, Valery ;
Borgstrom, Magnus T. ;
Wunnicke, Olaf ;
Verheijen, Marcel A. ;
Bakkers, Erik P. A. M. .
NANO LETTERS, 2007, 7 (02) :367-371
[25]   Tailoring the morphology and luminescence of GaN/InGaN core-shell nanowires using bottom-up selective-area epitaxy [J].
Nami, Mohsen ;
Eller, Rhett F. ;
Okur, Serdal ;
Rishinaramangalam, Ashwin K. ;
Liu, Sheng ;
Brener, Igal ;
Feezell, Daniel F. .
NANOTECHNOLOGY, 2017, 28 (02)
[26]   Optical properties of Ag-coated GaN/InGaN axial and core-shell nanowire light-emitting diodes [J].
Nami, Mohsen ;
Feezell, Daniel .
JOURNAL OF OPTICS, 2015, 17 (02)
[27]   Optical properties of plasmonic light-emitting diodes based on flip-chip III-nitride core-shell nanowires [J].
Nami, Mohsen ;
Feezell, Daniel F. .
OPTICS EXPRESS, 2014, 22 (24) :29445-29455
[28]   Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme [J].
Paramanik, Dipak ;
Motayed, Abhishek ;
Aluri, Geetha S. ;
Ha, Jong-Yoon ;
Krylyuk, Sergiy ;
Davydov, Albert V. ;
King, Matthew ;
McLaughlin, Sean ;
Gupta, Shalini ;
Cramer, Harlan .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (05)
[29]   INDEX OF REFRACTION ZNO [J].
PARK, YS ;
SCHNEIDER, JR .
JOURNAL OF APPLIED PHYSICS, 1968, 39 (07) :3049-+
[30]   Position-Controlled Growth of GaN Nanowires and Nanotubes on Diamond by Molecular Beam Epitaxy [J].
Schuster, Fabian ;
Hetzl, Martin ;
Weiszer, Saskia ;
Garrido, Jose A. ;
de la Mata, Maria ;
Magen, Cesar ;
Arbiol, Jordi ;
Stutzmann, Martin .
NANO LETTERS, 2015, 15 (03) :1773-1779